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ABSTRACT
Many recent computing platforms combine CPUs with di�erent

types of accelerators such as Graphical Processing Units (GPUs),
to cope with the increasing computation needs of complex real-

time applications. However, most hardware accelerators have not

been designed to provide predictable timing-behavior to support

real-time tasks. Moreover, they do not provide e�cient preemption

mechanisms.

In this work, we present the design of a software library to pro-

gram and execute real-time tasks onto hardware accelerators (e.g.

GPUs) that exhibit limited-preemption capabilities with variables

costs. The library provides: 1) parallel execution for real-time appli-

cations within the same accelerator; 2) the choice of di�erent parti-

tioned scheduling algorithms (FP, EDF, Gang-EDF); 3) support for

(limited) task preemption. We describe a user space implementation

of the library as a proof of concept. We also present a schedulability

analysis for real-time tasks programmed using this platform, in

particular for partitioned EDF and GANG-EDF.

The e�ectiveness of the proposed scheduling strategies and their

analyses is demonstrated through 1) actual measurements on a

GPU platform, and 2) through synthetic task sets.
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1 INTRODUCTION
Many real-time applications such as computer vision, surveillance

systems, etc. are complex processing on a large amount of data, re-

quiring tera�ops computation capabilities. Since classical multipro-

cessor platforms combining only CPUs cannot satisfy the real-time

requirements of such applications, they are usually implemented

on special hardware computing units such as GPUs.

Recently, NVIDIA has proposed computing platforms combining

CPUs with di�erent types of specialized computing unit such as

GPUs, Deep Learning Accelerating (nvDLA), etc., on the same chip.
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These platforms can o�er suitable solution to meet deadlines for

recent complex real-time applications. However, the complexity of

the software combined with the complexity of the hardware make it

di�cult to predict the temporal behavior of such systems. Moreover,

these accelerators are not designed to execute real-time tasks, as

they do not provide proper hardware and software mechanisms to

schedule real-time tasks.

Several authors [1, 8, 14] have been interested in providing sup-

port to real-time systems onto GPUs. NVIDIA GPU internal sched-

uling decisions have been studied in [1] by benchmarking the Jetson

TX2 platform [17]. Several software mechanisms and libraries have

been provided to control scheduling within the GPU [8, 13, 15].

However, most of them consider the GPU as a non-preemptive

resource.

More recent NVIDA architectures, like Pascal, enable preemption

at block level, whereas Volta-based architectures permit preemption

at the instruction level. However, these preemption capabilities

may be limited. For example in the Jetson TX2 platform, if task B
preempts task C and task A wants to preempt task B, the latter is
blocked until B �nishes. Capodieci et al. in [4] have implemented

preemptive scheduling algorithms (CBS/EDF, FP, etc.) for NVIDIA

GPUs without these preemption limitations, however they use

NVIDIA proprietary closed source internals.

In all the previously cited works, the GPU is seen as a single

core platform: parallelism is exploited at the level of the kernel
implementation (a kernel refers to the task code and is executed

using several parallel threads on the GPU computing elements),

but only one kernel at time is allowed to be resident within the

GPU. This is a considerable limitation when several concurrent

real-time applications need to be executed in the system. In fact,

a GPU consists of many hundreds of computing SIMD and MIMD

elements, and not every kernel needs to use all of them at the

same time. As we will see later, the programmer can specify the

amount of resources to execute a given task/kernel, and if enough

free resources are available, it is possible to execute two or more

tasks/kernels in parallel. Conversely, a kernel can demand all the

resources of a GPU, and therefore must execute alone in the system.

To account for these di�erent kind of kernels, the GPU can be

modeled as a multi-core system, where tasks can be allocated to a

single core, while others request all GPU resources at the same time.
This execution model is similar to the gang-scheduling model. In

gang scheduling, parallel tasks are run simultaneously on di�erent

processors at the same time. They start, �nish and are preempted

at the same time on all processors. Therefore it is the model that

we will adopt in this paper.

https://doi.org/10.1145/3394810.3394826
https://doi.org/10.1145/3394810.3394826
https://doi.org/10.1145/3394810.3394826


RTNS 2020, June 9–10, 2020, Paris, France Houssam-Eddine ZAHAF and Giuseppe Lipari

Contributions. In this paper, we present the design of a software

library to program and execute real-time tasks onto hardware ac-

celerators (e.g. GPUs) that exhibits limited preemption capabilities

with variables costs. We describe one implementation of the library

for the NVIDIA Jetson TX2 board and we provide schedulability

analysis of the tasks programmed using our design on accelerators

exhibiting the similar behaviors to GPUs.

The library provides the following functionalities:

• Parallel execution for real-time applications: every task is

implemented by a CUDA kernel that executes on a number

of streaming processors of the GPU. If enough streaming

processors are available, two or more CUDA kernels can

execute in parallel,

• Support for gang-scheduling: tasks may require more than

one streaming processor can be scheduled along with tasks

requiring only one streamingmultiprocessor. Therefore, tasks

are allowed to execute on all requested streaming multipro-

cessors at the same time. To support gang-scheduling, we

combine resource reservations and hierarchical scheduling

techniques (see Section 6).

• Choice of the scheduling algorithm: current implementation

supports Fixed Priority (FP), Earliest Deadline First (EDF),

and Gang-EDF;

• Support for (limited) task preemption.

To the best of our knowledge, this is the �rst library to supporting

parallel and gang-scheduling on GPUs. The design of the library is

generic and modular, and can be extended to other similar hardware

platform and include other scheduling strategies.

The remainder of the paper is organized as follows. In the next

section, we will brie�y detail GPU architecture and its known in-

ternal scheduling mechanisms. In Section 3, we overview related

works. Section 4 introduces the system model (task and computing

architecture). The design of our programming platform is presented

in Section 5. Schedulability analysis is described in Section 6. Results

and experiments can be found in Section 7. We draw conclusions

in Section 8.

2 OVERVIEW ON GPU ARCHITECTURE AND
PROGRAMMING

Even if our platform design is generic enough to be applied to dif-

ferent accelerators, it has been currently implemented on NVIDIA

GPUs using CUDA, therefore in this section we brie�y overview

the GPU architecture and programming.

A GPU is compound of one or several streaming multiprocessors
(SMs) and one or several copy engines (CEs). Streaming multiproces-

sors are a collection of computational resources having the ability

to execute GPU kernels, whereas copy engines perform memory

copy operations between di�erent address spaces. Programming

the GPU requires dividing parallel computations into several grids,
and each grid into several blocks. A block is a set of multiple threads.

The number of blocks per grid and the number of threads per block

is de�ned by the programmer. It represents the required amount of

resources (threads) to properly execute the kernel.

AGPU can be programmed using generic platforms suchOpenCL

or proprietary APIs. We use CUDA, a NVIDIA proprietary platform,

to have a tight control on SMs and CEs. Our library is implemented

in C/C++ using the NVIDIA nvcc compiler.

Typical CUDA programs are organized in the same way. First,

memory allocation operations are achieved both on CPU and GPU

sides, for a real-time task this operation is achieved before the real-

time task execution. Further, memory copies are operated between

the main memory and the GPU visible memory. Later, the GPU ker-

nel is launched (typically a very large number of parallel threads),

and �nally results are copied back to the main memory by mem-

ory copy operations. All threads of the same block are executed

by one and only one SM, however di�erent blocks of the same

kernel may be executed on di�erent SMs. The kernel execution

order and resource management mechanisms are driven by internal

closed-source NVIDIA drivers (in our case of study). Therefore, our

library limits as much as possible scheduling decisions, taken by

the NVIDIA internals, and implements scheduling strategies on the

top of CUDA.

3 RELATEDWORK
Analyzing the behavior of real-time tasks accelerated using hard-

ware speci�c architectures has been widely studied [1, 4, 7, 8, 13, 14,

18, 21]. Particularly, the GPU has received more attention. Kato et al.

have proposed di�erent platforms (e.g. TimeGraph and RGEM) for

non-preemptive scheduling for graphical tasks in the GPU [13, 14].

Another platform, called GPUsync, has been provided in [8]. It is

a set of lock mechanisms for GPU engines (Compute and Copy).

GPU engines are seen as mutually-exclusive resources that can

be accessed only by real-time locking protocols. GPU kernels are

scheduled with a non-preemptable FIFO algorithm. All these works

consider the GPU as non-preemptable accelerator. Capodieci et

al. in [4] modi�ed the proprietary NVIDIA driver to implement

di�erent preemptive scheduling policies.

Many works have focused on other accelerators than GPU. An

implementation of the FRED framework for the Linux over the

Zynq-7000 platform produced by Xilinx has been presented in [18].

It discusses the design solutions for managing hardware accelera-

tors in general. Then, a software architecture for Linux is presented.

Danne and Platzner [7] proposed schedulability analysis for peri-

odic real-time tasks on FPGA based accelerations. Burgio et al. in [3]

in have proposed real-time analysis for many-core architectures

embedding accelerators by focusing mainly on memory scheduling.

In fact, memory copy operation between main memory and accel-

erators memory is a challenging issue in accelerated environment.

Our platform handles memory copy operations, however memory

copy operations are considered to be included in the task WCET in

the schedulability analysis. This assumption can be easily removed

and adapted according to the work in [3].

Theseworks does not considermodeling the computationswithin

the accelerator itself and consider them as a single computing re-

source. In this work, we consider accelerators as multiple resources.

That is, several tasks may be accelerated at the same time on the

same accelerator. Parallelisation mechanisms can be classi�ed into

two categories: multithreaded and gang-scheduling. In the �rst, par-

allel threads of the same task are scheduled independently from

each other [2, 6, 11], whereas in the latter they are all scheduled at

the same time. Goossens and Berten in [10] consider the scheduling
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of periodic and GANG-tasks. They provide an exact schedulability

test for Fixed Task Priority.

4 SYSTEM MODEL
We consider hardware platforms exhibiting the same characteristics

as those described in Section 2. It is modeled asm identical cores (a

core is equivalent to a streaming multiprocessor in a GPU).

Let T = {τ1,τ2, · · · ,τn } be a set of n periodic tasks. Each task

τi is an in�nite sequence of jobs. It is characterized by:

• C(τi ) is the worst case execution time. It is the necessary time

for the task to complete when all its resource requirements

are met (the number of blocks for the GPU).

• T(τi ) is the task period. It is the exact time between the

release of two consecutive jobs of task τi in the case of peri-

odic tasks and is the minimum inter-arrival time between

consecutive activation’s for sporadic tasks;

• D(τi ) is the task relative deadline;

• type(τi ) is the task execution behavior. It must be one of two

values:

– single: the task requires only one core to be executed.

– all: the task requires all cores to execute. Therefore tasks

are executed for C(τi ) time units on all cores at the same

time.

Preempting a task can be a costly operation, compared to more

traditional real-time systems where preemption costs can be ig-

nored. Therefore, we characterize a task by its worst case pre-

emption cost, denoted by PC(τi ). For example, in the Jetson TX2

platform, we consider preemption at block level, therefore the pre-

emption cost can be considered as the block execution time.

We denote by T B
the set of tasks that require all cores at the

same time and by T L
the set of all tasks that do not belong to

T B
. In this paper, partitioned scheduling is considered. Tasks are

allocated to cores and are not allowed to migrate at run-time. We

assume that task allocation is known in prior. We denote by Tp the

set of tasks allocated to only core p (i.e. Tp does not include tasks

in T B
), therefore:

T = {

m⋃
p=1

Tp } ∪ T B
(1)

We denote by u(τ ) the utilization of task τ , it can be computed

as the ratio of the task execution time by its period. We denote

byU (T ) the total utilization of task set T , it can be computed as

follows:

U (T ) =
∑
τ ∈T

u(τ ) (2)

J
j
i denotes the jth instance (job) of task τi . In the case of periodic

task behavior, J
j
i arrives exactly at time a

j
i = j · T(τi ), whereas in

the sporadic task model it must hold that a
j
i ≥ a

j−1
i + T(τi ). The

jth job must complete no later than d
j
i = a

j
i + D(τi ).

Example 1. We consider a set of 4 tasks, T = {τ1,τ2,τ3,τ4}. Task
characteristics and allocation are summarized in Table 1.

In this example, task τ1 is allocated on core 1 as well as task τ2,
whereas task τ4 is allocated on core 2. Therefore task τ1 and τ2 can be

τi Ci Di = Ti alloc
τ1 3 10 1
τ2 5 15 1
τ3 4 12 1 & 2
τ4 1 10 2

Table 1: Task set example with allocation

run in parallel along with τ4. When task τ3 starts its execution, none
of the other tasks can execute in parallel as long as τ3 executes.

5 GPU REAL-TIME PROGRAMMING USING
OUR PLATFORM

In this section, we present the design of our programming platform.

It is a set of functions to program real-time tasks on NVIDIA GPUs

and take scheduling decisions.

The library uses CUDA streams to enforce scheduling and con-

current execution. CUDA streams are an abstraction provided by

the NVIDIA CUDA API that allow to execute GPU kernels in a FIFO

order. Between di�erent streams, a �xed priority can be set. That is,

kernel in a stream of high priority are meant to run before kernels

of a lower priority stream. If a kernel in a low priority stream is

executing, and a kernel of a higher stream is submitted, the GPU

might preempt the current kernel, to execute the kernel of resident

in the high priority stream. Fine-grained preemption capabilities

are available in NVIDIA GPUs starting from the PASCAL architec-

ture. In the PASCAL architecture a preemption is possible at the

block level, i.e. preemption is achieved when all threads of a given

block �nish their execution. Recent VOLTA-based GPUs provide

even �ner-preemption levels, at instruction level.

While the number of available CUDA streams is theoretically

unlimited, the number of priorities is limited. For example, in Jet-

son TX2 platform, the number of priorities for CUDA streams is

limited to 2 levels. Although several streams allow asynchronous

and concurrent execution between the di�erent kernels, the kernels

of the same stream are executed in FIFO order.

NVIDIA GPU resource management is hidden by proprietary in-

ternals. NVIDIA abstracts GPU computation resources through the

notion of streaming multiprocessors (SMs) as a group of numerous

parallel computing resources. In the scope of our programming plat-

form, a SM can be assimilated to an independent core, and a GPU

to a multi-core platform. We provide function allocate_to_sm(int
sm_id) to allocate a kernel to a speci�c SM, where the sm_id is

the id of the target streaming multiprocessor. Implementation de-

tails of our platform and its usage can be found in its repository

(https://gitlab.cristal.univ-lille.fr/ptask/rtgpgpu/tree/master). For

space reasons, we do not exhaustively describe all the functional-

ities of our platform. For further details, please refer to platform

documentation available on its repository.

Our platform integrates three strategies to implement scheduling

decisions, according to the user needs and goals. These strategies

have di�erent performances and overheads. In the �rst and the

second strategy, the GPU is abstracted as a single core platform,

while in the third strategy as a multi-core platform. An overview of

our platform architecture is provided in Figure 1. The platform im-

plement event-based schedulers. Therefore the scheduler is invoked

https://gitlab.cristal.univ-lille.fr/ptask/rtgpgpu/tree/master
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at activation and completion events. The di�erent strategies have a

common design. All tasks scheduled using our platform are stored

in a task-queue called tq. When a task is activated, its priority is

computed and it is inserted accordingly to the active run-queue

denoted by rq, by invoking subscribe function. Later, according to
the selected strategy, tasks are consumed from rq, when resched
function is invoked. It moves the task from the active run-queue to

CUDA streams. Once, the tasks are in the CUDA streams, the GPU

internals consume the submitted kernels. Therefore, our platform

controls task scheduling before their submission to the GPU. Tasks

allocated to a dedicated core are inserted into the core queue (in

Figure 1 SM0-q or SM1-q). In the rest of this section, we overview

the di�erent strategies and how they operate.

5.1 Single-stream schedulers
The �rst strategy, called single-stream, uses only one CUDA stream

(h-sq in Figure 1) to enforce all the scheduling decisions. When

scheduler is invoked and the stream queue is empty, the highest

priority job in rq, according to the selected scheduling policy, is

moved to h-sq .

As only one CUDA stream is used, once the task is executing, it

cannot be preempted by another higher priority task. Therefore,

only non-preemptive scheduling algorithms can be implemented. It

is the simplest, and it provides an implicit synchronization between

active tasks. However, it involves reserving all the GPU resources

(both SMs in the case of Jetson TX2) to a single task at a time, even

if it may not occupy all the resources.

5.2 Multiple stream schedulers: preemption
enabling

In the second strategy, called multiple streams, the platform cre-

ates as much priority levels as streams to enforce scheduling de-

cisions. Therefore, in the platform general design (Figure 1), only

two streams are created, one with high and one low priority, h-sq
and l-sq respectively) as the platform is instantiated for the Jetson

TX2. This allows concurrent kernel execution, and preemption.

At each scheduling event, the scheduler checks one of the fol-

lowing cases:

(1) h-sq= ∅∧ l-sq= ∅: the scheduler will move the higher prior-

ity task from rq to l− sq. The task will be submitted immedi-
ately to execution.

(2) h-sq = ∅∧ l-sq , ∅: the scheduler checks if the highest

priority in rq is greater than the priority of the task in l-sq.
If yes, the task is inserted into the high priority queue h-sq.
Therefore, it preempts the task in l-sq, when possible (at

block level for Jetson TX2).

(3) Otherwise, no scheduling decision are taken.

According to this scheduling rules, only one preemption is al-

lowed at a time, when having two preemption levels, as in the case

of Jetson TX2. These scheduling rules can be easily extended to

more than two preemption levels. In the case of having PL pre-

emption levels, PL − 1 nested preemption can be achieved. We will

describe the analysis using an arbitrary number of preemption

levels. Although this strategy allows preemption, it still uses the

platform as a single core.

5.3 SMs as cores strategy
The third strategy uses the same stream con�guration as the pre-

vious one. However, tasks may invoke allocate_to_sm(· · · ), thus

they are allocated to only one core of the platform. This allows

more than one task to run in parallel at the same time. Tasks not

invoking allocate_to_sm(· · · ) are considered as requiring all GPU

resources, hence are executed with no parallelism.

In addition to the scheduling structures described for the previ-

ous strategy, this strategy uses one queue-per-core (i.e. SM0-q and

SM1-q in the case of two streaming multiprocessors). When a task

is activated, the task type is checked. If it uses all GPU resources,

no other task will be scheduled at the same time, therefore it will be

added to l-sq or h-sq similarly as in the previous strategy. If it uses

one core (i.e. SM), it is assigned to the corresponding core queue.

Later, the jobs having the highest priority in all core queues (SM0-q
and SM1-q) are scheduled by being inserted in l-sq or h-sq using

the same scheduling rules as in the previous strategy.

We highlight that every strategy management is transparent to

the platform user. Furthermore, it does not require any modi�cation

in the CUDA programming style. In fact, the design of the platform

is generic and modular and permits to easily add new strategies.

6 SCHEDULABILITY ANALYSIS
In this section, we provide schedulability analysis for a set of tasks

programmed using our platform for all the strategies. For sake of

simplicity, we assume that memory copy operations are achieved

at each kernel activation. The timing requirement of memory oper-

ations are included in the task worst case execution time, therefore

they are implicitly included in analysis. Scheduling the memory

copy operations independently for the task computation is going

to be considered in future work.

We consider constrained deadlines, that is D(τi ) ≤ T(τi ) for the
�rst and second strategy, whereas implicit deadlines for the last

strategy.

6.1 Single-stream schedulers: EDF analysis
The �rst strategy allows using the platform as non-preemptive

single resource. Therefore, classical non-preemptive analysis can

be applied here. For completeness, the analysis for non-preemptive

EDF is reported in Theorem 1.

Theorem 1. (Je�ay et al. [12])
Let T = {τ1,τ2, · · · ,τn } be a set of sporadic tasks ordered in non

decreasing order of their relative deadlines, that is τi ≥ τj =⇒
D(τi ) ≥ D(τj ).

T is schedulable, under non-preemptive EDF using the �rst strategy,
if :

∀τi ∈ T ,∀t ≤ t∗,
i∑
j=1

⌊
C(τi) − D(τj) + T(τi)

T(τj)

⌋
C(τj) + Bi ≤ t (3)

Bi = max

l
{C(τl ), i + 1 ≤ l ≤ n}

Where Bi is the maximum blocking time of task τi and t∗ is the task
set hyper period.
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Figure 1: Global overview of our platform

6.2 Multiple stream schedulers: EDF analysis
In contrast to the previous strategy, the multiple stream strategy

allows preemption. We denote by PC(τi )o the preemption cost

that task τi must consider when preempting other tasks. When

PL preemption level is available, only PL − 1 nested preemption

can be achieved. This limitation must be taken into account when

analyzing the behavior of real-time tasks under this strategy.

Lemma 1. Let T = {τ1,τ2, · · · ,τn } be a set of sporadic tasks
ordered in non decreasing order of their relative deadlines, that is

τi ≥ τj =⇒ D(τi ) > D(τj )

T is schedulable, under EDF using the second strategy, if :

∀i,∀t ≤ t∗,
i∑
j=0

⌊
C(τj) − D(τj) + T(τj)

T(τj)

⌋
(C(τ ) + PCo(τj)) + Bi ≤ t

Bi = max

l
{C(τl ), i + 1 ≤ l ≤ n − PL − 1} (4)

PCo (τj ) = max

l
{PC(τl ), i + 1 ≤ l ≤ n} (5)

Proof. Let τi be the just-active task, and τj the running task.

τi can preempt any task τj if D(τi ) < D(τj ), except if all stream
queues are not empty, according to scheduling rules of the second

strategy. In such case, τi is blocked. Therefore τi is blocked if PL
lower priority tasks are active. Therefore, if PL − 1 lower priority

tasks are active, τi is not blocked.
Therefore task τi can not be blocked by tasks τj such that j ≥

PL − 1 . Thus, these tasks must not be considered for τi blocking
time (Equation (4))

Task τi can preempt any other task having a lower priority,

therefore we account for preemption cost for all tasks having a

priority lower than τi as mentioned in Equation (5). �

6.3 SMs as cores : EDF-GANG analysis
In this strategy, the hardware architecture is considered as a multi-

core platform where tasks may be either allocated to a single core

or to all cores at the same time. Such scheduling problem is a special

case of the well-known gang scheduling problem in the literature

of real-time systems. For sake of simplicity, we remove preemption

level constraints, as well as preemption costs. We will show how

such parameters can be taken into account later in this section.

In this section, we assume tasks with implicit deadlines, that its

D(τi ) = T(τi ).
We use a hybrid solution. It uses two time triggered reservations.

The �rst reservation RL
is used to execute tasks that are allocated

to only one core, whereas reservation RB
is used to schedule the

tasks that are allocated to allm cores at the same time. All tasks

allocated to a single core, even those executing on di�erent cores,

are executed on reservation RL
. Within the same reservation, tasks

are scheduled according to EDF. Reservations are periodic. Each

reservation R is characterized by :

• O(R): is the reservation o�set. It is the time from which

reservation starts.

• Q(R): is the reservation budget. It is the time of service that

the reservation ensures.

• T(R): is the reservation period. It is the exact time between

the beginning of two consecutive reservation intervals.

Example 2. Let consider the task set in Table 1, using reservations
RL(0, 8, 12) and RB (8, 4, 12). τ3 executes within RB service time,
while τ1,τ2 and τ4 within RL . Even if τ1,τ2 and τ4 execute within
RL , τ4 executes in parallel with τ1,τ2 as it executes on a di�erent core,
τ1,τ2 are run concurrently on core 1.

We focus on scheduling in core 1. The �rst reservation service time
is the �rst 8 time units for each period of 12, whereas task τ3 executes
within the last 4 time units of the reservation period. The scheduling
on core 1 is reported in Figure 2. Task τ3 is allowed to run only in the
blue hashed space, whereas the other tasks are able to run elsewhere.
The last instance of task τ1 misses its deadline.

0 10 20 30 40 50 60

τ1

τ2

τ3

Figure 2: Example of time triggered reservation



RTNS 2020, June 9–10, 2020, Paris, France Houssam-Eddine ZAHAF and Giuseppe Lipari

Lemma 2. (necessary schedulability test) Let T be a task set, T =
T L ∪ T B .

If T is schedulable, then :

m∑
p=1

U (Tp ) +m ·U (T B ) ≤ m (6)

Proof. The proof is trivial. Tasks of T B
require the processor

form ·U (T B ) as they execute on all cores at the same time, added

to that the tasks of T L
are allocated to single cores, require at least

their utilization to be schedulable. �

Theorem 2. Let T be a task set scheduled on a platform compound
ofm cores using reservations RL and RB having the same period, and
complementary o�sets/budgets, therefore reservations do not overlap.

T is schedulable if and only if :

• ∀p ∈ {1, · · · ,m},Tp is schedulable within reservation RL

• T B is schedulable using reservation RB .

Proof. The proof is simple. We assume that T B
is schedulable

using reservation RB
, therefore no task will miss its deadline. Sim-

ilarly, tasks of T L
are allocated to a single core, and do not miss

their deadlines. Proving the schedule feasible requires proving that

both schedules do not overlap. This is ensured by reservation pa-

rameters, in fact RL
and RB

are complementary according to their

o�set, budget and periods, therefore they do not overlap, proving

the theorem. �

According to Theorem 2, analyzing the schedulability of a task set

implies: (i) analyzing the behavior of T B
using single core analysis,

within reservation RB
, and (ii) analyzing the schedulability on

every core separately within reservation RL
, and (iii) ensuring that

both reservations do not overlap. Thus, converting the problem of

scheduling gang tasks to a set of single core scheduling problems,

for which well known scheduling techniques exist. In the rest of this

section, we present schedulability analysis for single core platforms

with time-triggered reservation. For sake of simplicity, we omit the

reservation indexes.

Theorem 3. (Single core schedulability using sbf [19])
Let T be a set of sporadic tasks, executing within reservation R.
T is schedulable under EDF if:

∀t ≤ t∗, dbf(T , t) ≤ sbf(R, t) (7)

such that :

dbf(T , t) =
∑
τ ∈T

⌊
t − D(τ ) − T(τ )

T(τ )

⌋
· C(τ ) (8)

Where sbf(R, t) is the supply bound function, i.e. the available

processor time for reservation R within any interval of time of

length t . It is computed as follows :

sbf(R, t) =


t − (k + 1)(T(R) − Q(R))

if t > k · T(R) + (T(R) − Q(R)))

k · Q(R) else.(k =
⌊

t
T(R)

⌋
)

(9)

To reduce the complexity of computing the supply bound func-

tion, a lower bound approximation can be computed as follows:

sbf(R, t) =

{
0 if t ≤ O(R)
Q(R)

T(R) (t − (T(R) − Q(R))) else.

(10)

The test in Theorem 3 has been proposed for sporadic tasks,

therefore it is pessimistic for periodic task sets. In this section we

propose a schedulability test for periodic tasks. We prove the test

not comparable with Theorem 3. Therefore, we will consider in the

rest of this section, only periodic tasks.

The main idea of schedulability test for periodic tasks is to ac-

count for non-available time in the task demands. Therefore, mov-

ing task arrival times and deadlines, such that the task avoids being

executed out of its available reservations. Let τ ∗i be the execution

time demands of task τi including the time where it is not allowed to

execute. Each job of τi has its own execution demand, deadlines, and

arrival times as task periods may not match the reservation periods.

Wemodel the task execution requirement using a pipeline of chunks

of jobs by unrolling the task period onto the task set hyper-period.

We will show later that unrolling tasks is not necessary to derive

our su�cient schedulability test. The task conversion is disclosed

in Algorithm 1. Its complexity is exactly equal to
H

min{T(τi ),T(R))}
.
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Figure 3: The requirement task for τ1 of the Example in Ta-
ble

Example 3. Let consider task τ1 of the example in Figure 2. Task
requirements τ ∗

1
are reported in Figure 3, where each vertex is a chunk

of the task, represented by the vertex identi�er, the chunk execution
time and the deadline, the inter-arrival time between task chunks
are represented on the edges between vertices. The �rst job J 1

1
will

require to execute for 3 time units and must �nish its execution before
its new arti�cial deadline which is equal to 8 time units as shown in
vertex v1 in Figure 3. The second job, represented in v2, must start its
execution exactly at 12 time units from the arrival ofv1, and �nish no
later than 8 time units from its arrival. The J 4

1
must execute within

distinct intervals of the two reservation instances, as shown in Figure
2. Therefore it is split to 2 chunks, represented by v4 and v5, having
deadlines of 2 and 4 respectively. The distribution of the task execution
time on v4 and v5 is not known, therefore vertices execution times
are denoted by C1

1
and C2

1
for vertices v4 and v5 respectively. The

full conversion of task τ1 is described in Figure 3. The sum of chunks
execution times for the same job is bounded by the task worst case
execution time, therefore the C1

1
+ C2

1
= 3, under the constraint that

1d (A, t) (resp. a(A, t)) allows to compute the deadline (resp. the arrival) of the t th
instance of A.
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Algorithm 1 Conversion to digraph

1: Input: Task τ , Reservation R:

2: Output: requirement task τ ∗

3: k = 0, z = 0
4: j_l = create_chunks_list()
5: while (k · T(τ ) < H or · T(R)) < H ) do . H: Hyperperiod

6: [a_e�, f_e�] = [a(τ ,k), d(τ ,k)] ∩ [a(R, z)), d(R, z)];
7: if (a_e� < f_e�) then
8: last = get_last_job(j_l);
9: if (last sub-job is di�erent instance) then
10: C = C(τ );
11: else
12: C = undefined
13: C(last) = undefined
14: end if
15: s = create_new_subjob(id,C, f_e� − a_e�, 0, a_e�, k)
16: add_subjob_list(j_l, s)
17: end if
18: if (d(τ , k) == d(R, z)) then
19: z++; k++;
20: else
21: if (a(τ , k + 1) > d(R, z)) then
22: z++
23: else
24: if (d(τ , k) < d(R, z)) then
25: k++
26: end if
27: end if
28: end if
29: end while
30: update_arrival_times(j_l);
31: return j_l;

C1

1
≤ 2 for v2 as its deadline is equal to 2. The arti�cial deadline and

arrivals times are reported using red arrowns in Figure 2.

Lemma 3. Let T = {τ1,τ2, · · · ,τn } be a set of periodic tasks ex-
ecuting within reservation R. Let T ∗ be the set of requirements of
every task in T .

Tk is schedulable if and only if:

dbf(T ∗
k , t) ≤ t ,∀t ≤ t∗ (11)

such that :

dbf(τ ∗, t) = max

v ∈τ

∑
v ′∈τ

⌊
t − Õ(v ′) − D(v ′) + T(τ )

T(τ )

⌋
C(v ′) (12)

where2: Õ(v ′) = (O(v ′) − O(v)) mod T(τ )

Proof. The proof comes straightforward from thework of Stigge

et al. [20] as our model is a special case of the digraph tasks. In fact,

each task requirement is a pipeline of jobs. Therefore, the num-

ber of paths to evaluate is exactly equal to the number of vertices.

Moreover, t∗ can be bounded to task set hyper-period rather than

large bounds presented in [20] as the task periods are known. �

2
We remind that the remainder of a/b is by de�nition a positive number r such that

a = kb + r .

The task demand bound (dbf) function can be computed using

dynamic programming. The dbf is therefore pre-calculated, and
used during the analysis. Exploring solution space requires fast

schedulability analysis. In fact, the test in Lemma 3 requires com-

bining all possible values for non determined execution times of

all chunks in all tasks. The dbf computation can be very time con-

suming, especially if task and reservation periods are prime. We

provide now a dbf approximation to avoid exploring all possible

values of chunk execution times.

Definition 1. Let τ ∗ be the requirement for task τ .
τ ∗∗ denotes an approximation of τ ∗ obtained as follows:
(1) Select all the chunks within the same job
(2) Select the chuck having the largest deadline
(3) Eliminate other chunks and update vertices arrival times
(4) Repeat 1,2,3 for all job

Example 4. The approximation task τ ∗∗
1

for task τ ∗
1
presented in

Figure 3 can be found in Figure 4. Please notice that , v4 and the v7
has been eliminated.
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Figure 4: The τ ∗∗
1

conversion for τ ∗
1

It is easy to prove that the even if the dbf of τ ∗∗, is not necessarily
an upper approximation of the dbf of τ ∗, because it assumes that

the execution time of all chunks that does not have the maximum

deadline, are equal to zero, it is an upper bound of the dbf of the

original task τ .

Definition 2. Let τ ∗∗ be the task requirement of τ obtained by
applying the transformation on De�nition 1.

Let τ ∗∗∗ be a periodic task characterized by (C,D′, T′) such that :
• D′ is the minimum deadline among all vertices in τ ∗∗

• T′ is the minimum period between any consecutive vertices in
τ ∗∗

Theorem 4. If task set T ∗∗∗ is schedulable, task set T is schedu-
lable under reservation R,

Proof. To prove the theorem, it is su�cient to prove the follow-

ing Equation is true : :

dbf(τ ∗, t) ≤ dbf(τ ∗∗∗, t),∀t .
Let L∗(τ , t) be the set of vertices that can be released by task τ ∗

at instance time t

L∗(τ , t) = {v1,v2, · · · ,vp }

Consider a new sequence

L∗∗∗(τ ∗∗∗, t) = {v ′
1
,v ′

2
, · · · ,v ′

p′}
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where each vertex v ′
i′ has an execution time exactly equal to

C(τi ) which is the upper bound of every vertex v of the task τ ∗.
The deadline of T(τ ∗∗∗) is shorter than the shortest deadline of

task τ ∗ (respectively periods). Thus, It is clear that sequence L∗∗∗

contains more jobs, with larger execution times than L∗. Therefore
dbf(τ ∗, t) ≤ dbf(τ ∗∗∗, t), proving the theorem. �

Theorem 5. The schedulability test presented in Theorem 3 and
the schedulability test of Theorem 4 are not comparable.

Proof. Proof by counter example.

Let τ1(C = 4,D = 5, T = 10) and τ2((C = 6,D = 40, T = 40) be

two tasks served by reservation R(O = 0,Q = 16, T = 20).

By converting the task τ1 to τ
∗∗∗
1

, we have τ ∗∗∗
1

(C = 4,D = 5, T =
10) and τ ∗∗∗

2
(C = 6,D = 16, T).
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Figure 5: counter examples

The analysis results are represented in the left sub-�gure of

Figure 5. Task set compound of τ1 and τ2 is schedulable according
to the test in Theorem 3, while it is not using schedulable according

to Theorem 4.

Let now consider the task set compound of τ1(C(τ1) = 3, T(τ1) =
D(τ1) = 10) and τ2((C(τ1) = 4, T(τ1) = D(τ1) = 15) running under

reservation R(O(R) = 0,Q(R) = 8, T(R) = 12). The results of

schedulability analysis of these tasks are reported in the right sub-

�gure in Figure 5. It is clear that using the test of Theorem 3 the

task set is schedulable, however when using the test in Theorem 4

it is not. Thus, the theorem is proven.

�

6.4 Analysis in the presence of harmonic
periods

In this section, we consider harmonic periods, that is the reserva-

tions period are either multiplier or divider of each task period.

Definition 3. Let τ be a task running using reservation R such
that T(R) and T(τ ) are harmonic.

τ ′ is a the harmonic conversion of task τ such that :

T(τ ′) =min{T(R), T(τ )} (13)

D(τ ′) =max{0, T(τ ′) − (T(R) − Q(R)} (14)

C(τ )′ =C(τ ) ·
1⌈

T(τ )
T(R)

⌉ (15)

Theorem 6. Let T be a set of tasks executing within reservation
R.

Let T ′ be a task set obtaining by converting every task of T using
De�nition 3.

if T ′ is schedulable, T is schedulable.

Proof. The proof of this theorem is descendant from the proof

on Theorem 4. It will be reported in under two assumptions.

Assumption 1. Reservations period are greater than the task

period. As task period and reservation periods are harmonic, there

will be no reservation that does not have arrival time or period

matching one of the task arrival times. Therefore, none of the task

instances will have more than one chunk. The most constrained

job of these instances is either the �rst or the last (according to

the o�sets of reservations). When considering task conversion in

De�nition 3, the most constrained job is considered, therefore the

analysis is safe.

Assumption 2. If the task period is greater than the reservation

periods, the job will be split to a set of exactly identical chunks

(having the same period, deadline) according to the conversion

in De�nition 3. Therefore the task execution time can be split, to

several parts having the same length for every chunk, as de�ned

in Equation (15). Therefore, the sum of the execution time of all

chunks of any instance is equal to the task execution time.

From the assumptions (1) and (2) convers both case where reser-

vation period is devider or multiplier of task periods, hence theorem

is proved. �

7 RESULTS AND DISCUSSIONS
In this section, we evaluate the performances of the proposed pro-

gramming platform and schedulability tests on real and synthetic

task sets.

7.1 Synthetic experiments
We apply the di�erent schedulability tests presented in the paper

on a large set of randomly generated task sets onto an architecture

composed of 2 SMs, similar to the GPU of the Jetson TX2. Task

allocation is known in prior. We denote by n1 the number of tasks

allocated to core 1, respectivelyn2 for core 2.nb denotes the number

of tasks that are allocated to both cores at the same time. Each point

in all graphs is the average value of 100 execution.

7.1.1 Task set generation. The task generation algorithm starts

by applying the UUniFast algorithm [9] to generate n utilization.

For every task, the period is randomly selected from a prede�ned

period list. We multiply the task period by its utilization to obtain

the task execution time. The task deadline is randomly generated

in the interval [0.75 ∗ T(τ ), T(τ )].
This algorithm is repeated to generate tasks for T1, the tasks

allocated to core 1 and T2 the tasks allocated to core 2, and T B
the

tasks allocated to both cores. We vary total utilization of T B
from

0 to 1 by steps of 0.1. The utilization of the task sets T1 and T B
is

bounded according to the values ofU (T B ) using the necessary test

in Equation (6).

The reservation period is selected also from the periods list.

The reservation parameters are computed as follows: Q(RL) =
U (T1)

U (T1)+U (TB )
, O(RL) = 0,O(RB ) = Q(RL) and Q(RB ) = T(RL) −

Q(RL).

7.1.2 Simulations and discussions. In Figures 6 and 7, we report

schedulability rates of randomly generated task set whereU (T B )

is �xed to 0.2. U (Tl ) is varied from 0.2 to 1 by step of 0.1. We

can see that all schedulability tests achieve high schedulability



Design and Analysis of Programming Platform for Accelerated GPU-Like Architectures RTNS 2020, June 9–10, 2020, Paris, France

rates when the workload is very low. When the load increases

our test outperforms the sbf based test as the �rst fails at each

time reservation budget is greater than the worst case execution

time of any task (sporadic behavior), while our test keeps the task

set schedulable as it considers only periodic task sets. We refer

by SBF,SBF* and OUR to schedulability tests using Equation (9),

Equation (10) and Theorem 4.
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Figure 6: Schedulability rates when U(T B )=0.2

In Figure 7, the U (T B ) utilization is set to 0.5. Now the reser-

vation utilization are fairly shared between Rl
and RB

, Our dbf
approximation becomes more pessimistic compared to the results

in Figure 6, however it still outperforms the sbf based tests. The sbf
approximation test fails drastically as the reservation utilization

forU (T B ) is bigger.
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Figure 7: Schedulability rates when U(T B )=0.5

In Figure 8, we report results for the same con�guration as in

Figure 7 and Figure 6. However, task periods are either multipliers

or dividers of the reservations period. Our test is very e�cient

compared to the other reported tests. In fact, as reservation periods

matches task periods, our dbf approximation is less pessimistic,

therefore our test more e�cient compared to sbf based tests. More-

over, our test complexity is very low compared to sbf based test.

7.2 Real implementation implementations
The experiments reported in this section has been achieved using

our platform on Jetson TX2, running on Ubuntu 18.04.
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Figure 8: Schedulability test for harmonic periods

In Figure 9, we have run 3 di�erent tasks running the same GPU

kernel Compute_Hessian that can be found in Autoware [16] NDT

package. Each task has a di�erent priority. We have instantiated

the number of blocks so that each task uses all the GPU resources

(both SMs). We report the response time measurements for the

most priority task when using our platform and when launching

the kernels periodically without any control.

Our platform allows more predictability for the response time

bounds compared to the default execution (a stream per task). In fact,

in the absence of any control mechanism, tasks are all submitted

to the GPU without any ordering in a concurrent way, that is the

priority order is related to the task activation time only and available

resource in the GPU. The task response time is very variable and can

be very large, compared to the average case where the task executes

in isolation on the GPU. Our platform is more deterministic and

can provide safe execution behavior.

However, our platform present some anomalies due to the imple-

mentation in the user-space. Our response time, in few cases, can

be high compared to the average value when using our platform. In

fact, this is due to the completion noti�cation mechanism. Once the

kernel is submitted, our platform may call cudaStreamSynchronize
primitive to notify the end of that job (it is called only when active

job list does not contain the predicted highest priority job). The

last is an NVIDIA-internal closed-source primitive, that may have

unpredictable timing behavior. As response times are measured

after the end of that primitive, they may be large, (the response

times include the needed time to execute cudaStreamSynchronize

primitive to avoid including it in analysis).

In Figure 10, we execute two tasks one of a high priority and

the other of low priority, always the compute_Hessian process-

ing of Autoware. We modi�ed the input kernel size to enlarge the

execution times so preemption can be more easy to emulate, the

high priority task executes exactly 64 blocks, su�ciently to utilize

all GPU resources, while the other contains variables number of

blocks. The low priority task is run �rst in the we reproduce some

of experiments in [5] using our platform. We report here the aver-

age execution time as it is reported by the NVIDIA pro�ler. Both

tasks have been run using our platform. We recall that the NVIDIA

pro�ler does not pro�le preemption, it reports only the start and

the end execution time of GPU tasks. In the circle-mark plot, the

low priority task is run in isolation (using all GPU resources), while
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Figure 9: Execution response timewith andwithout our plat-
form

in the +-mark plot the low priority task is run �rst, later the high

priority task is submitted. Both tasks have the same period. As you

can see, when both tasks run only 64 blocks. The high priority task

does not have time to preempt the low priority task as we dispose of

preemption at block level in the Jetson TX2 platform as both tasks

have the same execution time. For all all other scenarios where

low priority task have more than 64 blocs, the low priority task

execution time is increased in average by the high priority task

execution time, the task has been preempted as expected at block

level.
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Figure 10: response time in the presence of preemptions

8 CONCLUSION
In this paper, we have presented the design of a programming

platform for GPU-like architectures, and its implementation in

user-space using CUDA for NVIDIA Jetson TX2. We developed

analysis for our platform for EDF, and a special case of GANG-EDF.

We have also provided a large set of synthetic experiments and

real implementations using our platform.

In future work, we plan to study memory co-scheduling for

accelerated environments and provide more precise schedulability

tests. We plan also to implement the solution that we provide in

this paper on the nouveau GPU driver.
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