
Precise and Efficient Analysis of
Context-Sensitive Cache Conflict Sets

Florian Brandner
florian.brandner@telecom-paris.fr

LTCI, Télécom Paris, Institut Polytechnique de Paris

Camille Noûs
camille.nous@cogitamus.fr
Laboratoire Cogitamus

ABSTRACT
Bounding the Worst-Case Execution Time (WCET) of real-time soft-
ware requires precise knowledge about the reachable program and
hardware states that might be observed at runtime. The analysis of
precise cache states is particularly important and challenging. Due
to the high cost of cache misses the analysis precision may have an
important impact on the obtainable WCET bounds, while the large
state space of the cache’s history leads to high analysis complexity.

This work explores the use of cache summaries in order to op-
timize the computation of precise cache states. These cache sum-
maries allow us to pre-compute the impact of executing a portion
of a program, typically a function, on the cache state. This allows
us, for instance, to skip the analysis of entire functions (including
nested function calls) when the cache states within these functions
are not relevant for the classification of memory accesses into hit-
s/misses. Furthermore, the summaries can be extended to efficiently
compute fully context-sensitive cache states. The summaries then
not only allow to derive typical cache hit/miss classifications, but
also provide fully context-sensitive cache persistence information.

CCS CONCEPTS
• Computer systems organization → Real-time systems; •
Software and its engineering → Automated static analysis;
Formal software verification.

KEYWORDS
Cache Analysis, Conflict Sets, Cache Summaries, LRU Cache Re-
placement, Worst-Case Execution Time
ACM Reference Format:
Florian Brandner and Camille Noûs. 2020. Precise and Efficient Analysis of
Context-Sensitive Cache Conflict Sets. In 28th International Conference on
Real-Time Networks and Systems (RTNS 2020), June 9–10, 2020, Paris, France.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3394810.3394811

1 INTRODUCTION
The computation of tight Worst-Case Execution Time (WCET)
bounds is challenging due to the increasing size of real-time soft-
ware [10] as well as the increasing complexity of the underlying
computer platforms. In hard real-time systems, the WCET analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RTNS 2020, June 9–10, 2020, Paris, France
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7593-1/20/06. . . $15.00
https://doi.org/10.1145/3394810.3394811

needs to consider all reachable program and hardware states that
might be observable at runtime. Static program analysis has been
applied successfully [34] to model both hardware and software
states. The information on these states can then be represented as
a weighted graph, which is used by the Implicit Path Enumeration
Technique (IPET) [19, 28] to compute the final WCET bound.

A crucial problem is to model the timing-relevant impact of
all hardware components in the underlying hardware, including,
for instance, the processor pipeline [33]. Caches have received
considerable attention in the last 20 years, due to the large state
space of the cache with regard to the program’s execution history.
This work focuses on instruction/code caches with a least-recently
used replacement policy (LRU). Such caches associate an age counter
with each cache block loaded into the cache. The age of a given
cache blockm is reset to 0wheneverm is accessed and incremented
whenever another conflicting cache block (mapped to the same
cache set) is accessed, that was older thanm or not cached (miss).
On a miss, the LRU policy evicts the oldest block from the set.

Traditionally, memory accesses of a program (e.g., load, store,
instr. fetch) are classified [2, 23] as either always hit (AH), always
miss (AM), or not classified (NC). One might also consider cache per-
sistence. A cache block is persistent with regard to a specific scope,
i.e., portion of a program, when it stays in the cache once loaded.
Persistence gives rise to a fourth classification, with respect to a
scope, that is often referred to as first miss (FM) [12, 23].

The classifications for the memory accesses of a program can
be derived from conflict sets [8, 15, 24]. A conflict set is usually
defined with regard to amemory blockm [34], i.e., an address range
in memory that is potentially loaded into the cache as a cache block,
and denotes the set of conflicting memory blocks that map to the
same cache set asm and that are loaded into the cache along withm.
From the size ofm’s conflict set it is then possible to judge whether
m might still be in the cache or not. If the conflict set is sufficiently
small, i.e., its cardinality is smaller than the cache’s associativity,
thenm is known to be in the cache. As analyses compute an over-
approximation of conflict sets, the inverse does not necessarily
mean thatm actually has been evicted.

Conflict sets for LRU caches denote, in fact, the memory blocks
that are younger than the analyzed memory blockm [35, 36]. Pre-
cisely computing conflict sets consequently provides a precise ab-
straction of the concrete cache states with regard tom (modulo the
order of blocks w.r.t. their ages). Using an efficient representation
of sets of conflict sets (aka. families) Touzeau et al. [36] proposed
to compute precise upper and lower bounds (on the cardinality) of
conflict sets to derive cache hit/miss classifications in two passes.

The starting point of this work is essentially the same representa-
tion of conflict sets, whichwas developed independently at the same.
We also rely on Zero-Suppressed Decision Diagrams (ZDDs) [21] in

https://doi.org/10.1145/3394810.3394811
https://doi.org/10.1145/3394810.3394811

RTNS 2020, June 9–10, 2020, Paris, France Florian Brandner and Camille Noûs

order to efficiently represent families of conflict sets. However, in-
stead of computing lower/upper bounds on conflict sets, we retain
all possible conflict sets. This inevitably leads to a larger state space
and potentially longer analysis times. The main contribution of this
work is to reduce the analysis overhead, and to a minor extent also
to improve analysis precision, by introducing cache summaries.

Cache summaries represent the impact on the conflict sets when
a given portion of a program is executed, i.e., typically a sub-graph
of the program’s control-flow graph such as a function or loop.
We distinguish two kinds of summaries: outer cache summaries
allow to efficiently obtain the conflict sets at the exit points of sub-
graphs, while inner cache summaries allow to efficiently obtain the
conflict sets right before a memory access within the sub-graph.
This improves analysis time by up to a factor of 200, since large
parts of programs that only produce intermediate conflict sets that
are irrelevant for the final cache hit/miss classification are skipped.

The paper is organized as follows.We first provide some essential
background on the method cache of the Patmos architecture, inter-
procedural control-flow graphs, and cache analysis using conflict
sets in Section 2. We then provide a motivating example to illustrate
shortcomings in the current state-of-the-art in Section 3, before
providing a high-level overview of the proposed approach. Section 5
and 6 provide a detailed description of the proposed analysis based
on outer and inner cache summaries. The approach is evaluated in
Section 7 using the TACLe benchmark suite [11]. Finally, related
work is discussed in Section 8 before concluding in Section 9.

2 BACKGROUND
This section introduces a precise analysis over families of conflict
sets, similar to Touzeau et al. [36]. The analysis relies on a single
analysis pass and is extended to support the method cache [9] of the
time-predictable Patmos processor [32]. We refer interested readers
to the review of Lv et al. [20] for an introduction to cache analysis.

2.1 Patmos’ Method Cache
The method cache deals with executable code, similar to traditional
instruction caches. The main difference is that the cache blocks are
formed by the compiler [14] and may exhibit variable sizes. The
size of a cache block is pre-pended to the block’s code, along with
complementary meta-information.

Like traditional associative caches the method cache [9] consists
of a cache controller, a tag memory, and a cache memory. In tradi-
tional caches the number of tag memory entries and the number of
cache blocks in the cache memory match. Consequently, the cardi-
nality of the conflict set is sufficient for traditional conflict-set-based
cache analyses to obtain a hit/miss classification. However, this is
no longer possible for the method cache, due to the variable-sized
cache blocks. Both, the number of occupied tag entries (limited by
the size of the tag memory) and the space occupied in the cache
memory (limited by the cache memory) have to be considered.
These limits are specified by cache configurations:
Definition 1. A (method) cache configuration is specified by
a pair ⟨a, s⟩, where a indicates the number of entries in the tag
memory and s the size of the cache memory (in bytes).

Note that themethod cache typically consists of a single cache set
and thus behaves like a fully-associative cache with least-recently

used (LRU) replacement or a single cache set of a traditional LRU-
based (instruction) cache. The subsequent analysis is thus more
generic than traditional cache analyses, i.e., standard instruction
(and data) caches are a special case of the method cache in terms of
the analysis where cache block sizes are fixed.

In addition, cache misses may only occur at specific control-flow
instructions: function calls and returns aswell as dedicated branches
with cache fill. This simplifies the processor’s pipeline, as misses
are handled in the same stage as data cache misses [9, 32] – which
eliminates timing anomalies known from traditional instruction
caches [13]. This also benefits cache analysis, since the cache’s state
may only change when a control-flow instruction is executed. This
can explicitly be represented by edges in the control-flow graph,
defined next.

2.2 Inter-Procedural Control-Flow Graphs
We rely on a special kind of Inter-Procedural Control-Flow Graph
(ICFG), which not only captures the calling relations between func-
tions but also explicitly represents the method cache’s branch in-
structions (with/without cache fill) [17, 26]:

Definition 2. An Inter-Procedural Control-Flow Graph is a
graph G = (V , E,MB) consisting of control-flow nodes in V and
control-flow edges in E ⊆ V × V . Each node is associated with a
memory block inMB via a functionmb : V → MB, while edges may
represent different kinds of control flow via the function kind : E →

{FLOW, FILL, CALL, RET, LINK}.

For the purpose of this work the code inside the CFG nodes is
actually not relevant, only the memory block of a CFG node is
considered. Apart from LINK edges, the various edge kinds actually
correspond to different classes of Patmos’ control-flow instruc-
tions [30, 32]. More specifically, FLOW edges represent branches
without cache fill, which do not impact the cache’s state, and FILL
edges correspond to branches with cache fill. Function calls and
returns are represented by CALL/RET edges. Edges thus explicitly
represent program points where method cache misses may occur.
LINK edges designate the control-flow successor within a function
when by-passing a call, i.e., LINK edges represent function-local con-
trol flow. Such ICFGs can also be defined for standard instruction
caches, e.g., by splitting nodes at cache block boundaries.

2.3 Analysis via Families of Conflict Sets
Based on these definitions we can formalize the analysis using
abstract interpretation [7]. This requires the formal definition of an
abstract domain, a transfer function, and a meet/join operator. We
refer interested readers to the book of Khedker et al. [18], which
gives an excellent introduction.

Abstract Domain. Before defining the abstract domain itself, we
first provide some definitions. As usual in cache analysis, cache
blocks have to be tracked even when they are not in the cache. We
thus introduce the notion of memory blocks, i.e., “cache blocks” in
the cache and/or memory:

Definition 3. A memory block m ∈ MB specifies an address
range in main memory that is potentially loaded into the (method)
cache. The set of memory blocks accessed by the program is given

Precise and Efficient Analysis of Context-Sensitive Cache Conflict Sets RTNS 2020, June 9–10, 2020, Paris, France

by MB. Each memory block is associated with a non-zero size in
bytes via the function size : MB → N+.

One can then define a test to check whether a conflict set fits
into a cache according to its cache configuration:

Definition 4. A conflict set C ⊆ MB fits into a cache with a
given cache configuration ⟨a, s⟩, if the set’s cardinality |C | (tag
memory) and size (cache memory) are smaller than or equal to the
associativity and size of the cache respectively:

fits ⟨a,s ⟩(C) = |C | ≤ a ∧
∑
m∈C

size(m) ≤ s . (1)

We define an abstract domain using families over power sets of
the program’s memory blocks (P(MB)). These families (indicated
by double stroke letters, e.g.,A) represent an over-approximation
of the concrete conflict sets on sub-paths starting at an access to a
given memory blockm ∈ MB. However, one notices that conflict
sets may only grow larger as sub-paths get longer. We thus only
need to track conflict sets that are small enough to fit into the cache
and replace conflict sets, that do not fit, by the special symbol Aleph
(ℵ):

Definition 5. The abstract domain of the static analysis is given
byD = P({ℵ}∪P(MB)). The special symbols⊥ = ∅ ∈ D indicates
the absence of analysis information, while ℵ indicates the presence
of conflict sets that do not fit into the cache (c.f. Definition 4).

Definition 6. From a family I ∈ D the cache hit/miss classification
is derived as follows: always hit (AH) if ℵ < I, always miss (AM) if
I = {ℵ}, or not classified (NC) otherwise.

Transfer Function. Reusing the notation for the dot product of
two families from previous work [22], given byA ·B = {S | ∃A ∈

A,∃B ∈ B : S = A ∪ B}, we define the dot product for values from
the abstract domain from above. It replaces conflict sets that do not
fit into the cache by ℵ (2nd line), which is needed in the transfer
function defined below:

Definition 7. The dot product with cardinality and size con-
straints for a given cache configuration ⟨a, s⟩ is given by:

A
⟨a,s ⟩
· B = {S ∈ A ·B | fits ⟨a,s ⟩(S)} ∪{

{ℵ} if ∃R ∈ A ·B : ¬fits ⟨a,s ⟩(R)
∅ otherwise

The transfer function models the evolution of the conflict sets
along sub-paths with respect to a memory blockm, considering a
cache configuration ⟨a, s⟩.

Definition 8. The transfer function takes two arguments, a CFG
node n and a family of conflict sets I ∈ D, representing all sub-
paths starting at another access to m or the program entry and
ending right before n:

T ⟨a,s ⟩
m (I,n) =

{
{{mb(n)}} if mb(n) =m

I
⟨a,s ⟩
· {{mb(n)}} otherwise.

The transfer function produces a new family in D that either
represents extensions of the various sub-paths by appending the
memory block accessed by n, or a new sub-path starting at n, i.e.,
after accessingm.

Meet Operator. The meet operator merges the analysis informa-
tion along disjoint sets of paths at confluence points, i.e., control-
flow nodes with multiple predecessors.

Definition 9. Themeet operator takes two (or more) families of
conflict setsA and B from disjoint sets of sub-paths as input and
produces their union:

M(A,B) = {S | S ∈ A ∨ S ∈ B}.

Overall Analysis Flow. The analysis determines the family of
conflict sets at every program point one by one for each memory
blockm potentially accessed by the program. In the case of standard
caches the analysis also proceeds per cache set, i.e., the transfer func-
tion and meet operator only consider conflicting memory blocks
that map to the same cache set. The final hit/miss classification is
derived according to Definition 6 on the control flow edges right
before accesses to the analyzed memory blockm.

The resulting data-flow equations can be solved using the usual
fixed-point algorithm [18], while ignoring LINK edges in the ICFG,
initializing the equations at the program entry to {ℵ} (compulsory
misses for an empty cache), and initializing the equations to ⊥

everywhere else. We refer interested readers to Touzeau et al. [35,
36] for additional discussion.

Example 1. Assume memory block m1 is analyzed for a 4-way
set-associative cache configuration ⟨4, 4⟩ and an initial family I =
{{m1,m2,m3,m4}, {m1,m2,m4,m5}}. I at this point contains two
conflict sets that both fit into the cache, which represents an al-
ways hit classification (AH). Applying the transfer function T ⟨4,4⟩

m1
on I for CFG nodes n3 and n6, accessing memory blocksm3 and
m6 respectively, yields: T

⟨4,4⟩
m1 (I,n3) = {{m1,m2,m3,m4},ℵ} and

T ⟨4,4⟩
m1 (I,n6) = {ℵ}. The results thus represent a not classified (NC)

and an always miss (AM) classification.

3 MOTIVATING EXAMPLE
This section illustrates the baseline analysis from the last section
on a small example and highlights two shortcomings.

Example 2. Figure 1 shows the ICFG of a program’s main function,
calling another function F several times in a switch statement.
The control flow internal to the called function is not shown due
to space considerations. However, the program’s memory blocks,
CFG nodes (ni) and edges for the main function are depicted. We

Edge kinds
FLOW
FILL
CALL
RET

LINK

Memory Blocks
m1
m2
m3
m4

n1

n3n2 n4

F

n6n5 n7

n8

Figure 1: ICFG of a program (see Example 2).

RTNS 2020, June 9–10, 2020, Paris, France Florian Brandner and Camille Noûs

assume that the analysis does not distinguish calling contexts, i.e.,
the calls to F are represented by the same sub-graph of the ICFG.

Let’s assume that the called function contains highly complex
control flow, (conditionally) accessing many different memory
blocks. However, F does not access any of the memory blocks
of main. The cache states within function F are thus irrelevant for
the hit/miss classification of main’s memory blocks.

Assume, for instance that memory block m1, accessed by CFG
nodes n1, n2, and n5, is analyzed. This means that the cache state
at the out-going edges of n1 is represented by the family {{m1}}.
For the path on the left-hand side, passing through n2 and n5, the
same cache state is propagated into F – potentially triggering the
computation of a large number of cache states. For the path in
the middle (n3, . . . , n6) and on the right (n4, . . . , n7) different cache
states are propagated to the entry of F: {{m1, m2}} and {{m1, m3}}
respectively. The function F is reanalyzed every time a new cache
state is propagated to its function entry – adding F’s memory
blocks and merging the conflict sets along the various paths in F.
The intermediate cache states for all program points have to be
retained in order to obtain the cache state at the RET edges of F,
i.e., leading back to the CFG nodes n5, n6, and n7.

Function F is consequently analyzed 3 times in this example –
despite the fact that none of the intermediate states are relevant for
the hit/miss classification at n5.

Another, minor, issue caused by the call-context insensitivity
also becomes apparent. The analysis has no means to differentiate
the cache states originating from the calls at n2, n3, and n4. Con-
sequently, all the cache states are propagated along the RET edges.
Notably, bogus states containing m2 or m3 may reach the node n5.

The previous example illustrates the high sensitivity of the pre-
cise conflict set analysis of Touzeau et al. [36] with regard to calling
contexts: different cache states at different contexts may frequently
trigger the computation of a large number of irrelevant cache states.
The second issue, related to the propagation of bogus states, is cir-
cumvented in most WCET analysis tools by completely unrolling
all loops (whose iteration bounds have to be known in real-time
software anyways) and by inlining all functions (recursion is typi-
cally discouraged in real-time software). However, this aggressive
duplication of code only exacerbates the complexity issue.

The next section introduces cache summaries to avoid both of
these problems, with the final goal of obtaining an efficient and
fully context-sensitive analysis.

4 ANALYSIS OVERVIEW
The analysis proposed in this work proceeds in a similar fashion
as the baseline analysis from Section 2. Abstract interpretation
is performed in order to compute an over-approximation of the
cache states that might appear during any program execution. The
analysis is performed independently for each memory block. As
illustrated by the motivating example, considerable analysis over-
head is caused by re-analyzing sub-graphs of the ICFG representing
the program.

To avoid this issue, this work proposes so-called cache summaries.
Cache summaries allow us to reason about the evolution of cache
states with regard to a sub-graph of the ICFG – for instance func-
tions or loops. The summaries can be reused and thus considerably

A
+
C

(a) Outer Summaries

BA

+
BC

(b) Inner Summaries

Figure 2: Cache summaries for the analyzed memory block
(blue) with regard to a sub-graph, i.e., the cloud shape.

reduce analysis time. However, as illustrated in the following sec-
tion in more detail, these cache summaries have to cover different
execution scenarios in order to capture all possible cache states.
We thus distinguish two classes: outer and inner cache summaries.

Sub-figure 2a illustrates the use of outer cache summaries during
the analysis, which allow us to capture the evolution of cache
states along execution paths passing through a sub-graph. For this,
the analysis tracks two kinds of execution paths through the sub-
graph along with their respective cache states. Paths that access the
analyzed memory block are described by the A summaries (red),
while paths that do not access the analyzed memory block are
captured by C summaries (orange). The A and C summaries allow
us to efficiently compute the cache states when leaving the sub-
graph (at the bottom) from the cache states before entering the
sub-graph (top) – as indicated by the black arrow. The analyses
to obtain outer summaries and their application are described in
Section 5.

Sub-figure 2b illustrates inner cache summaries, which allow
us to efficiently derive the cache states that occur before accessing
the analyzed memory block within the given sub-graph. For this,
inner cache summaries have to track the potential cache states
along all execution paths that lead to an access of the analyzed
memory block. Again two classes of paths are considered. Firstly,
the BC summaries capture paths that enter the sub-graph from
the outside (orange) and lead to the first access to the analyzed
memory block within the sub-graph, while BA summaries capture
execution paths that lead from one access to the analyzed memory
block to another access (red). Combining the information from these
two summaries can be used to compute persistence information with
regard to the scope of that sub-graph [12, 23]. Section 6 provides a
detailed description of the analyses required to obtain inner cache
summaries.

Inner and outer cache summaries are computed via abstract in-
terpretation on the respective sub-graph only – ignoring other parts
of the program. In addition, summaries of nested sub-graphs, i.e.,
sub-graphs appearing within each other, can be efficiently reused
to compute the cache summaries of surrounding sub-graphs (Sub-
sections 5.3 and 6.2). Summaries thus represent partial analysis
information that can be efficiently combined and reused during the
analysis of a given memory block, but also for other memory blocks
– resulting in a considerable reduction of analysis complexity.

Precise and Efficient Analysis of Context-Sensitive Cache Conflict Sets RTNS 2020, June 9–10, 2020, Paris, France

5 OUTER CACHE SUMMARIES
The baseline analysis, presented in Section 2, proceeds by com-
puting families of conflict sets in an incremental way. On each
step the analyzed sub-paths are extended by appending a new CFG
node, while updating the conflict sets accordingly. To improve the
analysis, one could extend the sub-paths in a more coarse grained
fashion, e.g., by concatenating whole sub-paths, e.g., going through
a sub-graph. Let’s consider this in a small example:

Example 3. Assume that we have two sub-paths p1 = (n1,n2) and
p2 = (n3,n4), where each ni is associated with a matching memory
block mi , 1 ≤ i ≤ 4, and that we wish to analyze the conflict
set of m1. The conflict set of these sub-paths are {m1,m2} and
{m3,m4} respectively. Appending p2 to p1 gives a new sub-path
(n1,n2,n3,n4), whose conflict set corresponds to the union of the
two conflict sets. However, if we append p1 to p2, the conflict set
of the combined sub-path (n3,n4,n1,n2) is simply {m1,m2}. The
transfer function (Definition 8) resets the analysis information to
{m1} at node n1 and then addsm2 to the conflict set.

Apparently one cannot simply take the conflict sets of sub-paths
and combine them using a simple set union. This stems from the
fact that accesses to the memory block under analysis actually reset
the conflict set (cf. the first case of Definition 8). However, similar
to traditional GEN/KILL data-flow problems [18], one can try to
summarize the behavior of these two scenarios separately. We use
two kinds of outer cache summaries for this: A summaries capture
the behavior of a sub-graph of the ICFG along paths that access the
analyzed memory block, while C summaries capture paths through
the sub-graph where the memory block is not accessed.

Definition 10. Given an ICFG G = (V ,E,MB) a sub-ICFG G′ =

(V ′,E ′,MB) is a sub-graph, where V ′ ⊆ V and E ′ = {(n,o) ∈ E |

n ∈ V ′ ∨o ∈ V ′}. The entry edges and exit edges of G′ are edges
that allow to enter/leave the sub-graph: entry(G′) = {(n,o) ∈ E ′ |
n < V ′ ∧ o ∈ V ′} and exit(G′) = {(n,o) ∈ E ′ | n ∈ V ′ ∧ o < V ′}.

A sub-ICFG can be chosen arbitrarily. However, two classes of
sub-graphs appear to be particularly interesting: functions and
loops. This work will primarily focus on functions, where the entry
and exit edges simply correspond to the corresponding CALL and
RET edges respectively. The summaries are then computed through
function-local abstract interpretation.

5.1 C Summaries for Paths Without Accesses
The objective of C summaries is to obtain a family of conflict sets
that represents the impact of executing any path through a sub-
graph, i.e., the impact on the cache state after leaving the sub-graph.
For this, we need to consider all sub-paths through the sub-graph
that start at an entry edge, end at an exit edge, and do not access the
analyzed memory block. We do not consider summaries of nested
sub-graphs, for now.

The analysis reuses the abstract domain and meet operator from
before, only the transfer function needs to be modified. A first
insight is that the conflict sets for a C summary evolve quite simi-
larly to the regular conflict sets, i.e., whenever a new CFG node is
encountered its memory block is added to the conflict sets, while
respecting the cache characteristics ⟨a, s⟩. The main difference is
that accesses to the memory block under analysis (m) have to be

nI

nII nIII

nIV

⊥

⊥ ⊥

{{mII}} ⊥

{{mII,mIV}}

{∅}

{{mI}} {{mI}}

⊥ {{mI,mIII}}

{{mI,mIII,mIV}}

(a) A summary:
A

F⟨4,4⟩
mII

= {{mII, mIV }}

nI

nII nIII

nIV

⊥

⊥ ⊥

{{mII}} ⊥

{{mII,mIV}}

{∅}

{{mI}} {{mI}}

⊥ {{mI,mIII}}

{{mI,mIII,mIV}}

(b) C summary:
C

F⟨4,4⟩
mII

= {{mI, mIII, mIV }}

Figure 3: Cache summaries for the memory block of nII
within a simple function F (see Examples 4 and 5).

filtered. Instead of producing a valid conflict set it suffices to sim-
ply produce an invalid (⊥) value in the transfer function for C
summaries:

T C(G′)⟨a,s ⟩
m (I,n) =

{
⊥ if mb(n) =m

I
⟨a,s ⟩
· {{mb(n)}} otherwise.

(2)

The usual fixed-point computation is performed on the sub-
graph G′, while also considering the sub-graph’s entry and exit
edges. This is important in order to initialize the data-flow equa-
tions, which are set to {∅} for all entry edges (not to confuse with
⊥ = ∅). This means that conflict sets are initially empty when
entering the sub-graph, then incrementally grow larger or are re-
set to ⊥, and are eventually propagated all the way to the exit
edges. The final summary of the sub-graph can then be obtained
for each exit edge individually or can be combined over all exit
edges exit(G′) = {e1, . . . , ek } and their respective analysis infor-
mation Ci , 1 ≤ i ≤ k , using the k-ary version of the meet operator:
C
G′ ⟨a,s ⟩
m = M(C1, . . . ,Ck).
The C summaries are specific to a sub-graphG′ and the analyzed

memory blockm. However, it is easy to see that the same summary
is computed for all memory blocks that are not accessed within G′,
i.e., if ∄n ∈ V ′ : mb(n) =m.

Example 4. Consider the CFG of function F from Figure 3b, where
each node ni is associated with a memory block of unit size. The C
summary C

F⟨4,4⟩
mII for this function needs to be computed for mem-

ory block mII, accessed by node nII, and the cache configuration
⟨4, 4⟩.

The analysis on the entry edge leading to nI is initialized to
a family containing only the empty set ({∅}). Starting from this
empty conflict set the analysis adds memory blocks mI, mIII, and
mIV along the path on the right side. On the left, the analyzed mem-
ory block mII is accessed, resulting in the analysis information ⊥

on the edge (nIII, nIV). The conflict set from this path is conse-
quently filtered from the cache summary, resulting in a C summary
C
F⟨4,4⟩
mII = {{mI, mIII, mIV}}.

5.2 A Summaries for Paths With Accesses
A summaries are similar to C summaries, except that this time we
need to consider all paths through the sub-graph that enter the
sub-graph on an entry edge, leave the sub-graph on an exit edge,
and access the memory block under analysis.

RTNS 2020, June 9–10, 2020, Paris, France Florian Brandner and Camille Noûs

The analysis is performed on a sub-graph G′, including the en-
try and exit edges, considering a cache configuration ⟨a, s⟩ and a
memory blockm. This time, however, the analysis domain, meet
operator, and even the transfer function from the baseline analysis
are reused without any modification.

The only difference to the baseline analysis is the initialization
of the data-flow equations. The initial value at the entry edges is
set to ⊥. This filters the conflict sets from paths that do not access
the memory block under analysis and only retains the conflict sets
of paths that actually do access it.

The final summary of the sub-graph, as before, can be obtained
by combining the analysis information over all exit edges exit(G′) =

{e1, . . . , ek } and their respective analysis information Ai ,
1 ≤ i ≤ k : AG′ ⟨a,s ⟩

m = M(A1, . . . ,Ak).

Example 5. Consider once more the CFG of function F from Fig-
ure 3a, assuming the same setup as for Example 4. The analysis infor-
mation at the entry is initialized to ⊥. Adding new memory blocks
consequently does not modify the conflict sets (cf. Definition 7).
This only changes after reaching an access to the memory block
under analysis at nII, which first produces the conflict set {{mII}}.
Subsequent accesses to other memory blocks are then added to the
conflict set, resulting in the A summary A

F⟨4,4⟩
mII = {{mII, mIV}}.

5.3 A/C Summaries for Nested Sub-ICFGs
The analyses from above allow us to obtain a cache summary for
a function. However, functions typically call other functions, for
which summaries might exist. This can be seen as an instance of a
nested sub-ICFG. The problem is then to exploit the summaries of
the nested sub-ICFG instance to compute new summaries for the
enclosing sub-graph.

For now, assume that a single nested sub-graph exists. We can
collapse this sub-graph G′′ by a summary node nG′′ and redirect
the entry/exit edges as follows:

Definition 11. Given a (sub-)ICFG G′ = (V ′,E ′,MB) and a nested
sub-ICFGs G′′ = (V ′′,E ′′,MB) the collapsed sub-ICFG G′ =

(V ′,E ′,MB) is defined by: V ′ = (V ′ ∪ {nG′′}) \ V ′′ and
E ′ = (E ′ ∪ {(o,nG′′) | ∃(o,n) ∈ entry(G′′)} ∪ {(nG′′ ,o) | ∃(n,o) ∈
exit(G′′)}) \ E ′′.

Several nested sub-graphs can easily be handled by collapsing
each instance of a nested sub-graph and replacing it by a dedicated
summary node. The analyses from above can then simply be applied
to the final collapsed sub-ICFG. However, transfer functions have
to be defined for the summary nodes. Assume that several nested
sub-ICFGs G′′

i were replaced by summary nodes nG′′
i
to form a

collapsed sub-ICFG G′, the transfer functions for the A and C

summaries of G′ then become:

T C(G′)⟨a,s ⟩
m (I,n) =

{
I

⟨a,s ⟩
· C

G′′
i ⟨a,s ⟩

m if ∃i : n = nG′′
i

T C(G′)⟨a,s ⟩
m (I,n) otherwise,

(3)

TA(G′)⟨a,s ⟩
m (I,n) ={
M
(
I

⟨a,s ⟩
· C

G′′
i ⟨a,s ⟩

m ,A
G′′
i ⟨a,s ⟩

m
)

if ∃i : n = nG′′
i

T ⟨a,s ⟩
m (I,n) otherwise.

(4)

Both cases refer to the transfer functions (T) defined for simple
sub-ICFGs and only perform special actions on the summary nodes
representing nested sub-graphs (∃i : n = nG′′

i
).

5.4 Analysis Using Outer Cache Summaries
The ICFG representation, (cf. Section 2), is particularly well suited
to compute summaries at the level of functions and does not require
to explicitly collapse the sub-graphs of functions. Starting from the
entry point of a function, it suffices to simply follow the LINK edges
where theA and C summaries of callees are applied, while ignoring
CALL/RET edges.

It remains to exploit the summaries in a regular analysis. Clas-
sifying accesses requires information on conflict sets before every
access to a memory block, i.e., analysis information at the source
node of every FILL, CALL, and RET edge. The summaries do not
provide this information. One solution would be to use the cache
summaries only to improve the analysis precision by adopting the
transfer function from Equations 3 and 4 and propagating informa-
tion related to calls only across LINK and CALL edges (RET edges
are simply ignored). This would allow to compute the complete
analysis information at every access to a given memory block, while
eliminating the propagation of bogus analysis information.

An obvious optimization is to skip functions that are not relevant
to the classification, i.e., functions that do not access the memory
block. Note that the A summary for such functions evaluates to ⊥,
which can be checked efficiently before processing CALL edges.
Furthermore, only the analysis information on exit edges of a sub-
ICFG needs to be retained. Intermediate results can be discarded in
order to reduce memory consumption. For functions it generally
suffices to only store the combined analysis information over all of
the function’s RET edges. The amount of memory required to store
the outer cache summaries is then proportional to the number of
functions instead of program points.

Analysis information is still propagated through functions, which
leads to intermediate conflict sets that might not be relevant for
the cache hit/miss classification. The summaries lack information
on the conflict sets within sub-ICFGs. The next section proposes a
solution to this shortcoming.

6 INNER CACHE SUMMARIES
Inner cache summaries describe how the conflict sets for a memory
block evolve up to some access of that block within a sub-ICFG. Two
cases have to be distinguished: the memory block is accessed for the
first time after entering the sub-graph (BC) and the memory block
is accessed again after a previous access within the sub-graph (BA).

6.1 B Summaries for Simple Sub-ICFGs
The first case corresponds to sub-paths from some entry edge of the
sub-ICFG to a CFG node that accesses the analyzed memory block,
without any intermediate accesses to that block. These paths are
readily covered by the analysis of the C summaries. The conflict set
at the first access to a memory block can then be computed using
the dot product (cf. Definition 7) between the conflict sets before
entering the sub-graph and the conflict sets from the analysis of the
C summary right before the access. The second case corresponds
to sub-paths within the sub-ICFG starting with an access to the

Precise and Efficient Analysis of Context-Sensitive Cache Conflict Sets RTNS 2020, June 9–10, 2020, Paris, France

memory block under analysis and leading up to another access to
the same memory block. These paths are readily covered by the
A summaries. The conflict sets of these accesses are independent
from the initial conflict sets when entering the sub-ICFG and thus
do not need any further computation.

Given a simple sub-ICFG G′ and a cache configuration ⟨a, s⟩,
the B summaries can be derived by a post-processing step after
the A and C summary analyses. It suffices to retain the analy-
sis information Ai and Ci respectively at FILL and LINK edges
that cause an access to the analyzed memory blockm: A = {ei ∈
E ′ | ei = (u,v) : kind(ei) ∈ {FILL, LINK} ∧ mb(v) = m}. One can
either store the information individually for each edge or combine
it as before: BA(G′)⟨a,s ⟩

m = M(A1, . . . ,A |A |) and B
C(G′)⟨a,s ⟩
m =

M(C1, . . . ,C |A |).

Example 6. Consider the ICFG from Figure 3 with a cache configu-
ration ⟨4, 4⟩. The B summaries for F are given by B

A(F)⟨4,4⟩
mII = ⊥

and B
C(F)⟨4,4⟩
mII = {{mI}}, cf. edge (nI, nII) in Subfigure 3a and 3b

respectively. The former indicates that mII is not accessed within
F before reaching nII, while the latter indicates that mI is always
accessed before reaching nII.

6.2 B Summaries for Nested Sub-ICFGs
Nested sub-ICFGs G′′

i are replaced by summary nodes nG′′
i
in a

collapsed sub-ICFG G′, while redirecting the entry and exit edges
as before. The B summaries are computed for the analyzed mem-
ory block m and the given cache configuration ⟨a, s⟩ in a post-
processing step. At each edge leading to a summary node of a nested
ICFG G′′

i , i.e., an edge e j in the set {e j ∈ E
′
| ∃i : e j = (u,nG′′

i
)} the

inner cache summaries of the respective nested sub-ICFG is com-
bined with the function-local analysis information of the A (Aj)
and C (Cj) summaries at that edge:

Aj = M
(
B

A(G′′
i)⟨a,s ⟩

m , Aj
⟨a,s ⟩
· B

C(G′′
i)⟨a,s ⟩

m
)

(5)

Cj = Cj
⟨a,s ⟩
· B

C(G′′
i)⟨a,s ⟩

m (6)

The information from the entry edges can be retained individu-
ally or combined using the usual meet operator:

B
A(G′)⟨a,s ⟩
m = M(A1, . . . ,A |A |

) (7)

B
C(G′)⟨a,s ⟩
m = M(C1, . . . ,C |A |

). (8)

6.3 B Summaries and Persistence
The BA summary information of a sub-graph allows us to derive
two kinds of persistence classifications: either with regard to a scope
covering the sub-graph alone (using the sub-graph’s BA summary)
or a scope covering also parts of the surrounding ICFG (via Equa-
tion 5). If the respective summary information evaluates to ⊥, the
analyzed memory block is not reused in the scope. If the summary
is {ℵ}, the block is reused, but definitely evicted. If the analysis
information contains ℵ, alongside other conflict sets, the block is
potentially evicted, while the block is persistent otherwise.

Example 7. Consider the ICFG of the main function from Figure 1,
while assuming that F is called again at the confluence point n8 (the

call is not shown in the figure). The setup is otherwise the same as
for the previous examples.

We wish to compute persistence information for memory block
mII, accessed within F, relative to main. For this the B summaries
of function F are needed: BA(F)⟨4,4⟩

mII = ⊥ and B
C(F)⟨4,4⟩
mII = {{mI}}

(cf. Example 6). These summaries are pre-computed and originate
from the A/C analyses, depicted on edge (nI, nII) in Figure 3.

The analyzed memory block mII is not accessed in the main
function itself. Persistence thus only changes at calls to F, i.e., the
LINK edges originating from n2, n3, n4, and n8. Since persistence is
obtained from the A summary at those edges (cf. Equation 5), we
briefly sketch its evolution here.

The A summary evaluates to ⊥ for the LINK edges originating
from n2, n3 and n4, due to the initialization to ⊥ at main’s entry
and the fact that mII is not accesses before any call to F. Combining
this information with F’s BA summary (also ⊥), this indicates that
mII is not reused between the program start and the first return
from F.

The situation changes for the additional call to F at n8. The
A summary for main at this point is obtained from F’s A sum-
mary (AF⟨4,4⟩

mII = {{mII, mIV}}, see Subfigure 3a) and by applying the
transfer function (Equation 3) for CFG nodes n5, n6, and n7. This
yields three conflict sets that are combined using the meet operator
and updated using the transfer function for n8: {{ m1, m4, mII, mIV},
{m2, m4, mII, mIV}, {m3, m4, mII, mIV}}. At this point mII is still guar-
anteed to be in the cache – if loaded during the first call to F.
However, when the A summary information of main is combined
with BC (cf. Equation 5), the conflict sets become too large (due to
mI).

Combining the analysis information over all call sites to F yields

B
A(main)⟨4,4⟩
mII = {ℵ}, which indicates that the analyzed memory

block is definitely not persistent within the main function.

6.4 Analysis Using Inner Cache Summaries
Inner cache summaries capture the accesses to the analyzed mem-
ory block with regard to a given sub-ICFG. We assume that func-
tions are a typical class of such sub-ICFGs. The information can
then be computed in a context-sensitive manner for each call site
– similar to the scope graph from Huber et al. [15]. The analysis
information is simply propagated upwards from the leaves of the
call graph [1] to its root.

It remains to show how the hit/miss classification can be derived
from the BC summaries. The problem here is that the conflict sets
are incomplete during the upward propagation, since conflicting
accesses up to the respective call sites are missing. This informa-
tion is only available once the B summary of the main function is
computed. However, Equations 7 and 8 only indicate how this infor-
mation is merged into a single summary – which corresponds to an
analysis without context sensitivity. Two options are possible. The
B summaries can be stored explicitly for edges leading to an access
of the memory block under analysis along with the various (nested)
call sites. This represents a fully context-sensitive analysis. Alter-
natively, it is possible to store the C summaries for the various call
sites (cf. Equation 6) and only compute the desired context-sensitive
information on-demand by traversing the call graph. The latter is

RTNS 2020, June 9–10, 2020, Paris, France Florian Brandner and Camille Noûs

attractive, as it causes minimal memory overhead proportional to
the number of functions and call sites.

Note, however, that the upward propagation of analysis informa-
tion for A, B, and C summaries, based on individual functions, is
only possible in acyclic call graphs. Programs containing recursive
functions, which are usually discouraged in real-time software, thus
cannot be handled by the proposed function-based approach. How-
ever, it is possible to define sub-ICFGs for the strongly-connected
components (SCCs) of the program’s call graph, for which outer
and inner cache summaries can be derived as a whole.

7 EXPERIMENTS
Our analyses were evaluated for the method cache and standard
instruction caches using the TACLe suite [11], i.e., benchmarks
commonly used to evaluate WCET analyzers. We used Patmos’
LLVM compiler (version 5.0) with default optimizations (-O2). The
minimal alignment of memory blocks is 8B for both kinds of caches,
while cache blocks of 16B are assumed for the instruction cache.
For the method cache the compiler was configured to form memory
blocks of up to 1KB, where profitable, and otherwise limit the
size to 256B [14]. The method cache is too organized in blocks,
cached memory blocks thus occupy a multiple of 16B. During the
generation of the benchmark executables the compiler exports the
call-context-insensitive ICFGs for the analysis.

Figure 4 shows the number of memory blocks for the TACLe
benchmarks that do not contain recursive functions (33 out of 53).
For the instruction cache (IC) the programs consist of between 11
and 3466 memory blocks. These numbers are consistent with those
of Touzeau et al [36], albeit slightly lower. The number of memory
blocks for the instruction cache is on average 10× larger than for
the method cache (MC). Here, all, but one, benchmarks consist
of less than 128 memory blocks. The variable-sized blocks of the
method cache thus represents a considerably smaller state space.

Other work on the method cache used cache sizes between 1KB
and 16KB, with 4 to 16 tag entries [14, 15, 31] (associativity). We
thus conduct experiments considering cache sizes of 2, 4, 8, and

co
ve

r
fa

c
bi

na
ry

se
ar

ch
bs

or
t

co
un

tn
eg

at
iv

e
du

ff
m

at
rix

1
in

se
rt

so
rt

jfd
ct

in
t

di
jk

st
ra

pr
im

e
cj

pe
g-

w
rb

m
p

ad
pc

m
-d

ec
ad

pc
m

-e
nc

co
m

pl
ex

-u
pd

at
es

nd
es iir

m
d5

hu
ff-

de
c

rij
nd

ae
l-d

ec lif
t

rij
nd

ae
l-e

nc fft
fil

te
rb

an
k

sh
a

pe
tr

in
et

fir
2d

im
cj

pe
g-

tra
ns

up
p

gs
m

-d
ec

po
w

er
w

in
do

w
st

at
em

at
e

1

2

8

32

128

512

N
um

be
ro

fM
em

or
y

B
lo

ck
s IC MC

Figure 4: Number of memory blocks per program of non-
recursive TACLe benchmarks (log-2-scale).

16KB and tag memory sizes of 4, 8, 16, and 32 entries. For the stan-
dard instruction cache the same configurations are used, resulting
in caches having between 4 and 256 sets.

The analysis tool relies on Zero-Suppressed Decision Diagrams
(ZDDs) [21] in order to represent the analysis information. Only
simple performance optimizations, based on caching, were applied
to the library (improvements should be easy to attain). The tool
was compiled with GCC (8.2.1) with standard optimizations (-O2).
All experiments were carried out on an unloaded workstation, with
an Intel Core2 Duo at 3.16GHz and 4GB of main memory,
running Linux (Kernel 4.12).

Analysis timesweremeasured using the standard high-resolution
clock (chrono::high_resolution_clock) from C++ and
only comprises the actual analysis time. As the number of potential
cache states is quite large, all analysis runs are terminated after a
timeout of 90 minutes.

We compare three analyses: a) Baseline, which performs the
naive analysis from Section 2, b) Outer, which propagates analy-
sis information throughout the entire program and only relies on
outer cache summaries (Section 5.4), and c) Full, which relies on
outer and inner cache summaries to compute fully context-sensitive
persistence information (Section 6.4). Note, we never fall back to
heuristics, i.e., the three analyses are applied to all memory blocks
of a program as presented in the previous sections.

7.1 Analysis Complexity
Figure 5 summarizes the average analysis times over all benchmarks
for all cache configurations and analyses. As one might expect, anal-
ysis complexity heavily increases with the size of the conflict sets,
which primarily depends on the cache associativity and the number
of memory blocks. This trend is clearly visible for the method cache
(MC). For standard caches (IC) the evolution of the analysis time
is not steady. The total cache size here has an important impact,
as it tends to reduce the size of the conflict sets by dispersing the
memory blocks over a larger number of cache sets.

The analyses based on cache summaries (Outer/Full) clearly
outperform the Baseline analyses – by up to a factor of 200. For
the method cache the gains increase with the size and associativity.
For the instruction cache the gains stay rather constant. Notably,

〈4
,
2
0
4
8
〉

〈4
,
4
0
9
6
〉

〈4
,
8
1
9
2
〉

〈4
,
1
6
3
8
4
〉

〈8
,
2
0
4
8
〉

〈8
,
4
0
9
6
〉

〈8
,
8
1
9
2
〉

〈8
,
1
6
3
8
4
〉

〈1
6
,
2
0
4
8
〉

〈1
6
,
4
0
9
6
〉

〈1
6
,
8
1
9
2
〉

〈1
6
,
1
6
3
8
4
〉

〈3
2
,
2
0
4
8
〉

〈3
2
,
4
0
9
6
〉

〈3
2
,
8
1
9
2
〉

〈3
2
,
1
6
3
8
4
〉

100

101

102

103

104

105

106

Ti
m

e
(m

s)

/ Baseline (MC/IC)
/ Outer (MC/IC)
/ Full (MC/IC)

Figure 5: Total analysis time over all benchmarks for all con-
sidered cache configurations (log-scale, lower is better).

Precise and Efficient Analysis of Context-Sensitive Cache Conflict Sets RTNS 2020, June 9–10, 2020, Paris, France

〈4
,
2
0
4
8
〉

〈4
,
4
0
9
6
〉

〈4
,
8
1
9
2
〉

〈4
,
1
6
3
8
4
〉

〈8
,
2
0
4
8
〉

〈8
,
4
0
9
6
〉

〈8
,
8
1
9
2
〉

〈8
,
1
6
3
8
4
〉

〈1
6
,
2
0
4
8
〉

〈1
6
,
4
0
9
6
〉

〈1
6
,
8
1
9
2
〉

〈1
6
,
1
6
3
8
4
〉

〈3
2
,
2
0
4
8
〉

〈3
2
,
4
0
9
6
〉

〈3
2
,
8
1
9
2
〉

〈3
2
,
1
6
3
8
4
〉

105

106

107

108

256 MB

32 MB

8 MB

To
ta

lM
em

or
y

(b
yt

es
)

/ Baseline (MC/IC)
/ Outer (MC/IC)
/ Full (MC/IC)

Figure 6: Total memory consumption over all benchmarks
for all cache configurations (log-scale, lower is better).

this is also true for 16-way set-associative standard caches. The
Baseline (IC) analysis here experiences a much larger number of
timeouts than the summary based analysis – which narrows the
gap in the plot.

The speedups stem from the fact that the summaries allow to skip
the analysis of large portions of the program that are not relevant
to the cache hit/miss classification. Note furthermore that the Full
analysis is considerably faster, despite the fact that it also computes
fully-context sensitive persistence.

For the largest cache configurations with an associativity of 32,
we only show the Full analyses as the other analysis variants expe-
rience too many timeouts. The Full analysis for the method cache
experiences between 1 and 5 timeouts with increasing associativity,
while the analysis for the standard cache experiences between 6
and 2 timeouts with increasing size. These time outs are due to
lacking optimizations in the ZDD library: the analysis spends most
time in a look-up function, retrieving existing objects. Considerable
improvements should be possible using analysis-specific caching.

The ZDD representation [21] of the analysis information is also
highly efficient. The average memory consumption over all config-
urations peaks slightly above 256 megabytes (MB) – see Figure 6.
Whereas the Full analyses for the method and standard caches peak
at merely 72MB (IC) and 15MB (MC). The gains of the summary-
based analyses follow a similar trend as execution times, albeit
less pronounced. Summaries reduce memory consumption by up
to a factor of 42× (IC) and 7× (MC) respectively. The summaries
and optimizations proposed in this work thus successfully reduce
analysis complexity by orders of magnitudes.

7.2 Comparison with the State of the Art
As pointed out before, the proposed analyses and in particular the
Baseline analysis (Section 2) are similar to the work of Touzeau et
al. [36]. The main difference is that Touzeau et al. compute max-
imum/minimum conflict sets in two passes, while the analyses
presented here compute all conflict sets in a single pass. This dif-
ference has two important implications. For one, the state space is
much larger when considering all conflict sets. This may increase
analysis time and memory consumption. On the other hand, more

information is available in the analyses presented here – since all
conflict sets are retained. This might prove interesting. For instance,
the analysis information can be used to determine eviction points,
i.e., program locations where memory blocks are evicted from the
cache. This might allow us to prove refined bounds on the number
of cache misses, which are intrinsically linked to the number of
evictions.

In order to evaluate the impact on analysis time we briefly com-
pare the analysis time of the Baseline analysis with the information
in Touzeau et al.’s paper [36, Figure 10]. Note that this comparison
should be taken with a grain of salt. The computer platforms (Intel
Core2 Duo, 2006 vs. Intel Xeon, 2012), compiler options, and ZDD
libraries used in the measurements are vastly different. This also
applies to the analysis input, including the binary programs (Pat-
mos ISA vs. ARM), benchmark compiler options, and considered
call contexts. The subsequent numbers are thus ballpark figures,
focusing on orders of magnitudes.

We compared equivalent cache configurations, assuming a stan-
dard instruction cache with a size of 4KB and an associativity of 4, 8,
and 16 respectively. All non-recursive benchmarks programs of the
TACLe suite were considered, except cover, duff, and test3.
The Baseline analysis seems to outperform Touzeau et al’s analysis
in most cases. This is particularly true for small associativity num-
bers. For instance, the Baseline analysis terminates instantly (0ms)
for 25 out of the 30 benchmarks, while Touzeau at al.’s analysis
requires up to about 1 second for these benchmarks. For the remain-
ing benchmarks Baseline appears to be faster by a factor of 100
on average. For higher levels of associativity the analysis speedup
goes down to a factor of 40 and 20 respectively. This change is par-
tially explained by the fact that the number of benchmarks where
the Baseline analysis terminates instantly drops from 25 to 17 and
finally 10. This coarse comparison indicates that even the naive
Baseline analysis is competitive against the state-of-the-art.

7.3 Predictability Considerations
The method cache was designed for the Patmos processor, which
aims for predictability and analyzability. However, only the average
performance was compared [31] with mainstream architectures,
such as LEON3, 1 found in industrial real-time systems. The re-
sults here allow us to shed some light on this matter in terms of
analyzability, i.e., which cache is simpler to analyze?

Cache configurations are not directly comparable. The method
cache operates on fewer, but larger, memory blocks, which promises
to reduce the analysis’ state space. Its space utilization is usually
limited by its associativity, i.e., small associativity combined with
small memory blocks may cause evictions (conflict misses) despite
the fact that only a fraction of the cache memory is used. Standard
caches, on the other hand, operate on disjoint cache sets, which al-
lows to decompose the cache’s state. Cache utilization here depends
on the distribution of memory blocks over cache sets, i.e., evictions
may occur in one cache set (conflict misses), while other sets are
not yet full. When comparing the maximum cache utilization across
cache configurations one can observe that the 4-way set-associative
standard caches have a slightly lower cache utilization than method

1https://www.gaisler.com/index.php/products/processors/leon3

https://www.gaisler.com/index.php/products/processors/leon3

RTNS 2020, June 9–10, 2020, Paris, France Florian Brandner and Camille Noûs

caches with 16 sets. We thus compare these two configurations
with a cache size of 4KB.

The average (maximum) analysis time for the method cache
amounts to 1.3 s (13.2 s), while for the standard cache the average
(max.) analysis time amounts to 107ms (3.5 s). Similarly, the av-
erage (max.) memory consumption amounts to 3.3MB (28.9MB)
and 1MB (19.2MB) for the method and standard cache respectively.
This indicates a slight advantage for the standard caches in terms of
analysis complexity. However, due to its simpler design (full associa-
tivity) the method cache’s behavior appears easier to predict, e.g.,
during the development of real-time software. The mapping of
memory blocks to cache sets of standard caches is more difficult to
predict/control – as proven by the unsteady plots in Figure 5.

Another factor of analyzability is analysis precision, which in
our case is best evaluated through persistence. Figure 7 summarizes
the fully-context-sensitive persistence information over all mem-
ory blocks and benchmarks for both kinds of caches (IC top,MC
bottom) according to the classification from Section 6.3 with regard
of the scope of the called function. The results are normalized to the
number of calling contexts and the size of the respective memory
blocks. Overall the results follow very similar trends: a consider-
able portion of the memory blocks are not reused, while many
blocks are persistent and only a small fraction is generally marked
non-persistent. The method cache achieves better results for 9 out

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

N
um

be
ro

fC
on

te
xt

s
(IC

) No reuse Non-persistent Pot. non-persistent Persistent

ad
pc

m
-d

ec
ad

pc
m

-e
nc

bi
na

ry
se

ar
ch

bs
or

t
cj

pe
g-

tra
ns

up
p

cj
pe

g-
w

rb
m

p
co

m
pl

ex
-u

pd
at

es
co

un
tn

eg
at

iv
e

co
ve

r
di

jk
st

ra
du

ff
fa

c fft
fil

te
rb

an
k

fir
2d

im
gs

m
-d

ec
gs

m
-e

nc
hu

ff-
de

c iir
in

se
rt

so
rt

jfd
ct

in
t

lif
t

m
at

rix
1

m
d5

nd
es

pe
tr

in
et

po
w

er
w

in
do

w
pr

im
e

rij
nd

ae
l-d

ec
rij

nd
ae

l-e
nc sh
a

st
at

em
at

e
te

st
3

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

N
um

be
ro

fC
on

te
xt

s
(M

C
)

Figure 7: Normalized total calling contexts with not
reused (top), NC-persistent, non-persistent, and persistent
(bottom) memory blocks (cache configuration IC:⟨4, 4KB⟩,
MC:⟨16, 4KB⟩).

of 33 benchmarks, while the standard cache shows better results
for 10 benchmarks. Major gains for the standard cache, e.g., for
complex-updates filterbank, iir, lift, md5, and sha
are, to a large part, due to the compiler forming too large mem-
ory blocks, e.g., when an entire loop as well as code before/after
that loop are placed inside a single memory block. This strategy
is successful in terms of average-case performance, but appears to
inflate the size of non-persistent regions of the ICFG. The gains
for the method cache, on the other hand, (gsm-enc, petrinet,
rijndael-dec, rijndael-enc, statemate, test3) can
be explained by a better cache utilization, i.e, the cache sets of
the standard cache are not ideally utilized. Note that the mem-
ory block formation by the compiler also explains the different
height of the cumulative bars, i.e., code that normally is not reused
is sometimes placed in a memory block with code that is reused.
The inverse might also appear, as illustrated by fac, the compiler
placed the benchmark’s loop into a single memory block: the block
is loaded once and then remains in the cache (i.e., the loop consists
entirely of FLOW edges and will never cause a cache miss).

The comparison between the two cache kinds is rather mixed.
The method cache does not significantly reduce complexity nor
does it yield vastly superior precision. However, as with average
performance [31], it is able to compete with standard caches and
still remains an interesting alternative to study, due to its simple
design.

8 RELATEDWORK
A classical approach to cache analysis using abstract interpretation
goes back to Ferdinand et al. [2]. They proposed to classify memory
accesses as AH, AM, or NC, based on an abstract domain that asso-
ciates minimum/maximum age bounds with each memory block.
The approach has proven quite successful for conventional caches.
However, it is an ill fit for the method cache, due to the fact that
the cache is fully associative. This is problematic for loops, where
the age of all memory blocks steadily increases until it reaches the
largest age of any memory block in the cache before the loop. This
often means that all memory blocks – including those within, but
also those outside of the loop – are essentially flushed from the
cache in terms of the analysis. Later work added support for persis-
tence [3, 12] that was proven incorrect. Corrections were proposed
later by independent teams [8, 16].

Recent work proposed exact analyses [36] to compute the min-
imum/maximum age of memory blocks. The age is represented
indirectly through minimum/maximum conflict sets, which are
computed similar to the baseline analysis (see Section 2). The work
here relies on a single analysis that computes all conflict sets. The
overhead induced by retaining all conflict sets is compensated by
decomposing the analysis problem into smaller problems using
inner and outer cache summaries. Note, however, that we could
also define minimum/maximum summaries similar to their work.
This would be compatible with the method cache presented here,
but not necessarily with variants of the method cache, currently
under development, that exploit meta-information (mentioned in
Subsection 2.1) in order to modify the replacement policy.

The notion of conflict sets was introduced by Mueller [24] and
later applied in various contexts [8, 15, 16]. A common limitation

Precise and Efficient Analysis of Context-Sensitive Cache Conflict Sets RTNS 2020, June 9–10, 2020, Paris, France

of these approaches is that a single conflict set over-approximates
all possible cache states, which can quickly become pessimistic
for large functions with disjoint control-flow paths. The approach
of Huber et al. [15] can be applied to caches with other cache
replacement policies than LRU, notably FIFO. The traversal of the
scope graph in their work is similar to the way summaries are
computed here.

Compositional analysis techniques have been developed based
on age- [4, 29] and conflict-set-based [27] approaches. The aim
here is to decompose the analysis of real-time programs at the
level of object files, assuming incomplete information on the final
program and its code layout (addresses). To achieve this, the various
approaches define some form of damage function, which over-
approximates the impact of calling a function (potentially from
another object file). Ballabriga et al. [4] proposed to split this damage
function into two components – corresponding to the A and C

summaries in this work. None of the past approaches defines a
concept comparable to the inner cache summaries (B). Also note
that the method cache design favors compositionality: address and
layout information is not needed, due to the fact that it is fully
associative, i.e., the analysis can be symbolic.

Chu et al. [6] applied symbolic execution in combination with
SMT solving to precisely model cache states. The approach not
only covers abstract cache states, but also takes infeasible paths
into account. However, this comes at a price: high analysis time
and memory consumption. The authors thus explore, similar to
this work, the use of summaries that combine the age-based ab-
straction [2] with conditions (constraints), capturing the execution
conditions under which the abstract cache states apply. The ap-
proach is evaluated using a standard 4KB 4-way set-associative
cache. Even for this small cache configuration the analysis times
go up to 709 s, with a memory usage in the order of gigabytes. The
analysis presented here appears to scale much better, even for cache
configurations that are considerably larger.

Other approaches focused on refining the results of a fast, but
imprecise, classical analysis – focusing on accesses classified as
NC. One option is to explicitly keep track of paths where cache
misses occur [25] and bound the number of misses by the number
of executions on those paths. Another approach is to refine the NC
classification by proving the existence of at least one path where a
cache hit and another path where a cache miss occurs. Touzeau et
al. [35] propose an analysis based on abstract interpretation and a
precise analysis based on model checking to accomplish this [35].
Chattopadhyay et al. [5] similarly propose to use model checking.

9 CONCLUSION AND FUTUREWORK
This work presented a novel technique to compute cache sum-
maries based on the notion of conflict sets. These summaries can
be computed for sub-graphs (e.g., functions) of an inter-procedural
control-flow graph. The analysis allows to compute precise conflict
sets by reusing summaries of nested sub-graphs that can be used to
derive fully-call-context sensitive classical cache hit/miss classifi-
cation and persistence information. The experiments indicate that
the approach scales reasonably for realistic cache configurations.

Large cache sizes still cause considerable analysis time overhead.
However, the experiments revealed several ways for improvements:

the use of a fast pre-analysis to classifying simple cases, the use of
minimum/maximum conflict sets, analysis-specific optimizations
to the ZDD library, and the pruning of call contexts where memory
blocks are not live.

Open research questions concern the composition of cache sum-
maries for loops from their loop bodies and programswith recursion.
For the former it appears feasible to define summaries of the loop
body, treating back edges as special forms of entry and exit edges.
This would allow us to precisely model the cache state across a
loop’s iteration space – similar to Huynh [16]. The latter can be
resolved by defining large sub-graphs covering cyclic regions of
the call graph. However, inspired from the handling of loops, it
might also be possible to define summaries for functions within
these cycles.

ACKNOWLEDGMENT
The author would like to thank Thomas Robert for sharing his
understanding on BDDs/ZDDs and the associated libraries as well
as Mihail Asavoae for the insight-full discussions leading up to this
work. The author would like to thank in particular Amine Naji for
his contributions to the Odyssey WCET analysis framework.

REFERENCES
[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers:

Principles, Techniques, and Tools (2nd ed.). Addison-Wesley.
[2] Martin Alt, Christian Ferdinand, Florian Martin, and Reinhard Wilhelm. 1996.

Cache Behavior Prediction by Abstract Interpretation. In Proc. of the International
Symposium on Static Analysis (SAS ’96). Springer, 52–66.

[3] Clément Ballabriga and Hugues Casse. 2008. Improving the First-Miss Computa-
tion in Set-Associative Instruction Caches. In Proc. of the Euromicro Conference on
Real-Time Systems (ECRTS ’08). IEEE, 341–350. https://doi.org/10.1109/ECRTS.
2008.34

[4] C. Ballabriga, H. Casse, and P. Sainrat. 2008. An Improved Approach for Set-
associative Instruction Cache Partial Analysis. In Proc. of the Symposium on
Applied Computing (SAC ’08). ACM, 360–367. https://doi.org/10.1145/1363686.
1363778

[5] Sudipta Chattopadhyay and Abhik Roychoudhury. 2011. Scalable and Precise
Refinement of Cache Timing Analysis via Model Checking. In Proc. of the Real-
Time Systems Symposium (RTSS ’11). IEEE, 193–203. https://doi.org/10.1109/
RTSS.2011.25

[6] D. Chu, J. Jaffar, and R. Maghareh. 2016. Precise Cache Timing Analysis via
Symbolic Execution. In Proc. of the Real-Time and Embedded Technology and
Applications Symposium (RTAS ’16). 1–12. https://doi.org/10.1109/RTAS.2016.
7461358

[7] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proc. of the Symposium on Principles of Programming Languages
(POPL ’77). ACM, 238–252. https://doi.org/10.1145/512950.512973

[8] Christoph Cullmann. 2013. Cache Persistence Analysis: Theory and Practice.
ACM Trans. Embed. Comput. Syst. 12, 1s, Article 40 (March 2013), 25 pages.
https://doi.org/10.1145/2435227.2435236

[9] Philipp Degasperi, Stefan Hepp, Wolfgang Puffitsch, and Martin Schoeberl.
2014. A Method Cache for Patmos. In Proc. of the International Symposium on
Object/Component-Oriented Real-Time Distributed Computing (ISORC ’14). IEEE,
100–108. https://doi.org/10.1109/ISORC.2014.47

[10] D. L. Dvorak (editor). 2009. NASA Study on Flight Software Complexity. Technical
Excellence Initiative. NASA Office of Chief Engineer.

[11] Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch,
Christine Rochange, Martin Schoeberl, Rasmus Bo Sørensen, Peter Wägemann,
and Simon Wegener. 2016. TACLeBench: A Benchmark Collection to Support
Worst-Case Execution Time Research. In Proc. of the Int. Workshop on Worst-Case
Execution Time Analysis (OASIcs), Vol. 55. Schloss Dagstuhl, 1–10.

[12] Christian Ferdinand and Reinhard Wilhelm. 1999. Efficient and Precise Cache
Behavior Prediction for Real-Time Systems. Real-Time Syst. 17, 2-3 (Dec. 1999),
131–181. https://doi.org/10.1023/A:1008186323068

[13] Sebastian Hahn and Jan Reineke. 2018. Design and Analysis of SIC: A Prov-
ably Timing-Predictable Pipelined Processor Core. In Proc. of Real-Time Systems
Symposium (RTSS ’18). 469–481. https://doi.org/10.1109/RTSS.2018.00060

https://doi.org/10.1109/ECRTS.2008.34
https://doi.org/10.1109/ECRTS.2008.34
https://doi.org/10.1145/1363686.1363778
https://doi.org/10.1145/1363686.1363778
https://doi.org/10.1109/RTSS.2011.25
https://doi.org/10.1109/RTSS.2011.25
https://doi.org/10.1109/RTAS.2016.7461358
https://doi.org/10.1109/RTAS.2016.7461358
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/2435227.2435236
https://doi.org/10.1109/ISORC.2014.47
https://doi.org/10.1023/A:1008186323068
https://doi.org/10.1109/RTSS.2018.00060

RTNS 2020, June 9–10, 2020, Paris, France Florian Brandner and Camille Noûs

[14] Stefan Hepp and Florian Brandner. 2014. Splitting Functions into Single-entry
Regions. In Proc. of the Int. Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES ’14). ACM, 17:1–17:10. https://doi.org/10.1145/
2656106.2656128

[15] B. Huber, S. Hepp, and M. Schoeberl. 2014. Scope-Based Method Cache Analysis.
In Int. Workshop on Worst-Case Execution Time Analysis (OASIcs), Vol. 39. Schloss
Dagstuhl, 73–82.

[16] Bach Khoa Huynh, Lei Ju, and Abhik Roychoudhury. 2011. Scope-Aware Data
Cache Analysis for WCET Estimation. In Proc. of the Real-Time and Embedded
Technology and Applications Symposium (RTAS ’11). IEEE, 203–212. https://doi.
org/10.1109/RTAS.2011.27

[17] A. Jordan, F. Brandner, and M. Schoeberl. 2013. Static Analysis of Worst-case
Stack Cache Behavior. In Proc. of the Conf. on Real-Time Networks and Systems
(RTNS ’13). ACM, 55–64.

[18] Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. 2009. Data Flow Analysis:
Theory and Practice (1st ed.). CRC Press.

[19] Yau-Tsun Steven Li and Sharad Malik. 1995. Performance Analysis of Embedded
Software using Implicit Path Enumeration. In Proc. of the Design Automation
Conference (DAC ’95). ACM, 456–461. https://doi.org/10.1145/217474.217570

[20] Mingsong Lv, Nan Guan, Jan Reineke, Reinhard Wilhelm, and Wang Yi. 2016. A
Survey on Static Cache Analysis for Real-Time Systems. Leibniz Transactions on
Embedded Systems 3, 1 (2016), 05–1–05:48. https://doi.org/10.4230/LITES-v003-
i001-a005

[21] Shin-ichi Minato. 1993. Zero-suppressed BDDs for Set Manipulation in Combina-
torial Problems. In Proc. of the International Design Automation Conference (DAC
’93). ACM, 272–277. https://doi.org/10.1145/157485.164890

[22] Alan Mishchenko. 2001. An introduction to zero-suppressed binary decision dia-
grams. Technical Report. University of California, Berkeley.

[23] Frank Mueller. 1994. Static Cache Simulation and its Applications. Ph.D. Disserta-
tion. Florida State University.

[24] Frank Mueller. 2000. Timing Analysis for Instruction Caches. Real-Time Syst. 18,
2/3 (May 2000), 217–247. https://doi.org/10.1023/A:1008145215849

[25] Kartik Nagar and Y. N. Srikant. 2017. Refining Cache Behavior Prediction Using
Cache Miss Paths. ACM Trans. Embed. Comput. Syst. 16, 4, Article 103 (May 2017),
26 pages. https://doi.org/10.1145/3035541

[26] A. Naji and F. Brandner. 2015. A Comparative Study of the Precision of Stack
Cache Occupancy Analyses. In Proc. of the Junior Researcher Workshop on Real-
Time Computing (JRWRTC ’15). 13–16.

[27] Kaustubh Patil, Kiran Seth, and Frank Mueller. 2004. Compositional Static
Instruction Cache Simulation. In Proc. of the Conference on Languages, Com-
pilers, and Tools for Embedded Systems (LCTES ’04). ACM, 136–145. https:
//doi.org/10.1145/997163.997183

[28] Peter P. Puschner and Anton V. Schedl. 1997. Computing Maximum Task Exe-
cution Times - A Graph-Based Approach. Real-Time Systems 13, 1 (July 1997),
67–91. https://doi.org/10.1023/A:1007905003094

[29] Abdur Rakib, Oleg Parshin, Stephan Thesing, and Reinhard Wilhelm. 2004.
Component-Wise Instruction-Cache Behavior Prediction. In Proc. of Automated
Technology for Verification and Analysis (ATVA ’04). Springer, 211–229.

[30] M. Schoeberl, F. Brandner, S. Hepp, W. Puffitsch, and Prokesch D. 2013. Patmos
Reference Handbook. Technical University of Denmark. http://patmos.compute.
dtu.dk/patmos_handbook.pdf

[31] Martin Schoeberl, Wolfgang Puffitsch, Stefan Hepp, Benedikt Huber, and Daniel
Prokesch. 2018. Patmos: A Time-predictable Microprocessor. Real-Time Syst. 54,
2 (April 2018), 389–423. https://doi.org/10.1007/s11241-018-9300-4

[32] Martin Schoeberl, Pascal Schleuniger, Wolfgang Puffitsch, Florian Brandner,
Christian W. Probst, Sven Karlsson, and Tommy Thorn. 2011. Towards a Time-
predictable Dual-IssueMicroprocessor: The Patmos Approach. In Proc. of Bringing
Theory to Practice: Predictability and Performance in Embedded Systems, Vol. 18.
OASICS, 11–21.

[33] Ingmar Jendrik Stein. 2010. ILP-based Path Analysis on Abstract Pipeline State
Graphs. Ph.D. Dissertation. Universität des Saarlandes.

[34] H. Theiling and C. Ferdinand. 1998. Combining Abstract Interpretation and
ILP for Microarchitecture Modelling and Program Path Analysis. In Proc. of the
Real-Time Systems Symposium (RTSS ’98). IEEE, 144–153.

[35] Valentin Touzeau, Claire Maïza, David Monniaux, and Jan Reineke. 2017. As-
certaining Uncertainty for Efficient Exact Cache Analysis. In Computer Aided
Verification (CAV ’17). Springer, 22–40.

[36] Valentin Touzeau, Claire Maïza, David Monniaux, and Jan Reineke. 2019. Fast
and Exact Analysis for LRU Caches. Proc. ACM Program. Lang. 3, POPL, Article
54 (Jan. 2019), 29 pages. https://doi.org/10.1145/3290367

https://doi.org/10.1145/2656106.2656128
https://doi.org/10.1145/2656106.2656128
https://doi.org/10.1109/RTAS.2011.27
https://doi.org/10.1109/RTAS.2011.27
https://doi.org/10.1145/217474.217570
https://doi.org/10.4230/LITES-v003-i001-a005
https://doi.org/10.4230/LITES-v003-i001-a005
https://doi.org/10.1145/157485.164890
https://doi.org/10.1023/A:1008145215849
https://doi.org/10.1145/3035541
https://doi.org/10.1145/997163.997183
https://doi.org/10.1145/997163.997183
https://doi.org/10.1023/A:1007905003094
http://patmos.compute.dtu.dk/patmos_handbook.pdf
http://patmos.compute.dtu.dk/patmos_handbook.pdf
https://doi.org/10.1007/s11241-018-9300-4
https://doi.org/10.1145/3290367

	Abstract
	1 Introduction
	2 Background
	2.1 Patmos' Method Cache
	2.2 Inter-Procedural Control-Flow Graphs
	2.3 Analysis via Families of Conflict Sets

	3 Motivating Example
	4 Analysis Overview
	5 Outer Cache Summaries
	5.1 C Summaries for Paths Without Accesses
	5.2 A Summaries for Paths With Accesses
	5.3 A/C Summaries for Nested Sub-ICFGs
	5.4 Analysis Using Outer Cache Summaries

	6 Inner Cache Summaries
	6.1 B Summaries for Simple Sub-ICFGs
	6.2 B Summaries for Nested Sub-ICFGs
	6.3 B Summaries and Persistence
	6.4 Analysis Using Inner Cache Summaries

	7 Experiments
	7.1 Analysis Complexity
	7.2 Comparison with the State of the Art
	7.3 Predictability Considerations

	8 Related Work
	9 Conclusion and Future Work
	References

