Multi-Criteria Function Inlining for Hard Real-Time Systems

Kateryna Muts
Hamburg University of Technology
Hamburg, Germany
k.muts@tuhh.de

ABSTRACT

Modern hard real-time systems shall satisfy some special require-
ments. Besides timing constraints, the additional design criteria
such as code size and energy consumption are also not negligible.
To optimize a system towards the mentioned specifications simul-
taneously is impossible, since the improvement in one of them may
lead to the degradation of others. Many compiler-based optimiza-
tions techniques have been proposed to optimize an embedded
application taking into account only one requirement. Neverthe-
less, some heuristics consider other requirements as constraints,
but not many works have tried to solve a multi-objective problem
in this context. We aim to extend a well-known compiler-based
optimization, function inlining, to a multi-objective problem. We
show that in case of such setup, the considered optimization leads
to a set of trade-offs between timing constraints, code size, and
energy consumption. Depending on the requirements, a system
designer can utilize the output set to make a final decision about
the system configuration without building an expensive hardware.

CCS CONCEPTS

« Computing methodologies — Optimization algorithms; « Math-
ematics of computing — Evolutionary algorithms; « Computer
systems organization — Real-time systems; » Software and its
engineering — Compilers.

KEYWORDS

Compiler, Multi-Criteria, Optimization, Evolutionary Algorithm,
Real-Time Systems

ACM Reference Format:

Kateryna Muts and Heiko Falk. 2020. Multi-Criteria Function Inlining for
Hard Real-Time Systems. In 28th International Conference on Real-Time
Networks and Systems (RTNS 2020), June 9-10, 2020, Paris, France. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3394810.3394819

1 INTRODUCTION

A hard real-time system is defined as an embedded system that must
react within a given deadline and missing the deadline might lead to
a catastrophic consequences. One of the most important properties
of such systems is the Worst-Case Execution Time (WCET), which

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RTINS 2020, June 9-10, 2020, Paris, France

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7593-1/20/06...$15.00
https://doi.org/10.1145/3394810.3394819

Heiko Falk
Hamburg University of Technology
Hamburg, Germany
heiko.falk@tuhh.de

is the worst possible execution time of a program, independently
from its input data [12]. Many approaches have been proposed in
the past in order to optimize WCET at compile time [7, 15, 16].

Also, embedded systems have limited memory space, whereas the
complexity of the code for embedded applications grows. Therefore,
another important criterion in modern embedded systems is code
size. Different approaches were presented to decrease the code size
by compressing the final executable [2, 6, 14, 18].

Apart from that, many embedded systems operate on battery.
One way to maximize the time between battery charges is to mini-
mize energy consumption of a system. Some optimization techniques
were proposed in this context [17, 21, 25].

One way to improve the quality of the embedded applications
according to the requirements is to apply optimization techniques
at compile time. Originally, the optimizing WCET-Aware C Compiler
Framework (WCC) [5] was developed to minimize the WCET and
to guarantee that the timing constraints of the compiled program
are met. Recently, WCC was extended with energy model [19] in
order to provide the information about energy consumption of
the compiled program. Therefore, we use WCC as a basis for our
multi-objective compiler-based optimization.

One of the well-known compiler-based optimizations is so-called
function inlining. The idea is to replace a function call by the body
of the callee. In this case, the function calls and return instruction
can be removed from the code which reduces the calling overhead
together with improving the pipeline’s behavior. The original func-
tion inlining focuses on minimizing the Average-Case Execution
Time (ACET) of a program and, in general, increases the WCET.
Nevertheless, it has been shown that function inlining can also be
utilized to minimize the WCET of the final program [10]. However,
the main drawback of this transformation is the growing code size
of the program due to duplicates of the function body. Moreover,
considering WCET and code size as two objectives performing
function inlining leads to a bi-objective optimization problem [13],
since the objectives contradict each other and cannot be minimized
simultaneously. Besides that, to the best of our knowledge, energy
consumption has never been considered within the context of func-
tion inlining.

The main contributions of this paper are:

e We formulate function inlining as a multi-objective opti-
mization problem considering WCET, code size, and energy
consumption as objectives;

o After solving the problem, the compiler returns a set of the
best solutions corresponding to the most optimal trade-offs
between the objectives;

e We analyze two evolutionary algorithms in terms of capabil-
ity to solve the multi-objective function inlining;

e We compare the result of the standard function inlining to
the multi-objective solution set.

https://doi.org/10.1145/3394810.3394819
https://doi.org/10.1145/3394810.3394819

RTNS 2020, June 9-10, 2020, Paris, France

This paper is organized as follows: Section 2 gives a brief overview
of related work with regard to function inlining and multi-objective
compiler-based optimizations. Section 3 briefly introduces the WCC
compiler framework, which we utilize as a basis for the proposed
multi-objective function inlining. Section 4 explains the multi-
objective function inlining in detail. In Section 5, evaluation results
are presented. This paper closes with a conclusion.

2 RELATED WORK

Many approaches have been proposed in the past in order to op-
timize WCET at compile time. Oehlert et al. [15] proposed an op-
timization to reduce final WCET performing bus-aware static in-
struction scratchedpad memory allocation. The achieved WCET
reduction is 26 % in average.

Originally, function inlining is a compiler-based optimization
that aims to minimize the ACET of a program. However, it has great
potential to be combined with other optimization techniques.

Woerteler et al. [24] applied function inlining to XQuery, which
was developed as a query language for XML database and later
became a complete functional programming language. In their
paper, the authors combined function inlining and query optimizer
techniques to achieve a better performance.

Moreover, function inlining can also be applied to improve the
worst-case performance. Lokuciejewski et al. [10] presented WCET-
aware function inlining approach based on machine learning heuris-
tics. The authors showed that the WCET-driven inlining heuristics
based on random forests outperform standard heuristics in terms
of WCET. In the paper, the code size increase was also taken into
account choosing functions for inlining. However, in contrast to
our approach, the influence on the energy consumption was not
considered. Moreover, the proposed method returns just one solu-
tion for the inlining problem, whereas we aim to get the set of the
best trade-offs between WCET, code size, and energy consumption.

Multi-objective mathematical approaches are rarely used to per-
form compiler-based optimizations in order to find the set of trade-
offs between the objectives. Lokuciejewski et al. [11] considered a
problem of finding the optimal compiler optimization sequences.
The authors examined two pairs of objectives (WCET, ACET) and
(WCET, code size) separately making the problem bi-objective. They
exploited the evolutionary algorithm to identify the set of optimal
compiler optimization sequences for each pair of objectives.

3 WCET-AWARE C COMPILER FRAMEWORK

We use the WCET-aware C compiler framework WCC [5] as a basis
for our approach. Figure 1 presents the structure of the WCC. The
main parts of it are a parser, the high-level representation, a code
selector, the low-level representation, and a code generator. The
integration of a static WCET analyzer within WCC, the tool aiT [1],
provides the information about WCET at compile time and enables
WCET-aware compiler-based optimizations.

A user can annotate the input ANSI-C source code of WCC with
flow facts that provide information about the code structure. The
flow facts such as the number of loop iterations or depth of the
recursion are mandatory for a static WCET analysis. We consider
this data as given, since it is out of scope of this work.

K. Muts, H. Falk

The WCC parser creates the high-level intermediate represen-
tation ICD-C from the ANSI-C source files. The high-level repre-
sentation is machine independent and moreover, it is close to the
source C language. Function inlining considered in the paper is
a high-level optimization technique, i.e., it does not require the
knowledge of the target architecture.

A code selector generates the low-level intermediate representa-
tion ICD-LLIR from the high-level representation. At this level, the
memory hierarchy and machine instructions of the target architec-
ture are modeled. Finally, an assembler and a linker are involved to
produce the final executable from the low-level representation.

To perform a static WCET analysis as well as to get energy con-
sumption and code size of a program, characteristics of the target
architecture’s instructions are required. Hence, WCC is tightly cou-
pled to the static WCET analyzer aiT [1] at low-level intermediate
representation. Moreover, at this level, the energy model that en-
ables energy-aware optimizations is integrated into WCC.

aiT performs the static WCET analysis using generic data flow,
loop and path analyses together with processor-specific microar-
chitectural analyses like, e.g., pipeline analysis. For energy analysis,
we use offline the measurement setup from [19], which is based
on [20], to determine the base- and inter-instruction-costs per ma-
chine instruction. The compiler exploits the measurement data
during compile-time such that per basic block, the instruction-level
energy costs are accumulated. Next, the costs per basic block are
scaled up by the number of executions per basic block that are
determined using profiling. This way, energy costs get analyzed
and estimated bottom-up from instructions over basic blocks and
functions up to the whole program.

In order to utilize the WCET, energy consumption, and code size
data performing the high-level optimizations, e.g., function inlining,
WCC features Back-Annotation, which connects two levels of ab-
straction. Back-annotation translates the timing and energy data as
well as code size of the program from the low-level representation
into the high-level representation.

4 MULTI-OBJECTIVE FUNCTION INLINING

In this section, we describe the proposed multi-criteria function in-
lining approach. Section 4.1 shortly introduces the main definitions
of multi-objective optimization that are required for the approach
described in the paper. In Section 4.2, we formulate function in-
lining as a multi-objective optimization problem and discuss the
methods that we utilize to solve it.

4.1 Multi-Objective Optimization Problem

In real-world problems, usually, several criteria have to be taken
into account. For example, as described in Section 1, the worst
possible execution time, code size, and energy consumption of a
program play an important role for hard real-time systems. Further-
more, optimizing all objectives simultaneously is usually impossible
due to the contradictions between the considered objectives. Such
problems are called Multi-Objective Optimization Problems (MOPs).
In contrast to Single-Objective Optimization Problems, MOPs are
more complex and difficult in terms of finding the optimal solution.
Besides, the result of solving a MOP is not a single solution but a
set of solutions that represent the trade-off between the objectives.

Multi-Criteria Function Inlining for Hard Real-Time Systems

RTNS 2020, June 9-10, 2020, Paris, France

s c -
Source & Code
Flow Facts B w Selector
-
’
/ ' === aiT WCET
/ N - s Analyzer
/ Back- -
! Annotation -
v Memory
WCET- Hierarchy

aware
Optimizations

Optimized
Assembly

Specification

WCET-

Figure 1: Structure of the WCET-aware C compiler framework WCC [5]

MOPs without constraints can be formulated as a minimization
problem without loss of generality:

min Fx) = (fi(x). fo(x)...... fs(x)) 1

where x = (x1,%2,...,%x,) € X is a vector of decision variables,
fi(x),t =1,2,...,s is an objective function.

Next, we introduce some definitions that are necessary for the
further explanations.

Definition 4.1. The set X of all possible decision variables is
called a decision or search space of the problem.

Hence, the search space describes the unknowns of the problem.

Definition 4.2. The objective space Z of the problem is
Z = {F(x)|x € X}.)

The objective space of the problem consists of all possible vectors
(fi, f2, ..., fs) of objective values on the given search space.

Let us consider two vectors of decision variables x and y to
introduce the definitions of multi-objective optimization. In the
following definitions, we consider a minimization problem.

Definition 4.3. x dominates y (x < y), if
Vie{1,2,...,s} fi(x)< fi(y) (3)

and

Ire{tz,....s}: fr(x)< f(y).)

In words, the vector x dominates another vector y, if for all
objectives, the values at x is not worse than the values at y and
there is at least one objective whose value at x is better than the
value at y. The next definition, weak dominance, describes the case
if the values at x are not worse than the values at y for all objectives.

Definition 4.4. x weakly dominates y (x < y), if
Vie{l,2,....s} fi(x) < fi(y) ®)

Definition 4.5. The dominance relation x < y is called Pareto
dominance and x < y is weak Pareto dominance.

Definition 4.6. A solution that is not dominated by any other
solution is called Pareto optimal.

Definition 4.7. The Pareto optimal set P* is a subset of the
search space consisting of all Pareto optimal solutions:

P* = {x|x is Pareto optimal}. (6)

The goal of any multi-objective optimization is to find the Pareto
optimal front:

Definition 4.8. The Pareto optimal front PF* is defined as a
subset of the objective space as follows:

PF* = {F(x)|x € P*}. (7)

In general, the search space of MOPs is often too large, therefore,
a problem of determining a single Pareto optimal solution might be
even NP hard [8]. Moreover, for many real-life problems, a proof of
optimality is computationally infeasible. For this reason, the aim is
to find a Pareto front approximation.

Well-known methods to approximate Pareto fronts are evolu-
tionary multi-objective algorithms. The main advantage of them is
that they are population-based heuristics that allow to consider se-
veral solution candidates within one iteration. A general framework
for any evolutionary algorithm is presented in Algorithm 1.

Algorithm 1 Evolutionary algorithm.

1: Input: initialized initial population, stopping criterion;
2. Output: approximated Pareto front.

3: while Stopping criterion is not reached do

4: Crossover;

5 Mutation;

6 Selection

7. end while

Every evolutionary algorithm starts with some initial random
population. Elements of a population are called individuals and rep-
resent variables from the search space. At every iteration, crossover,
mutation, and selection operators try to improve the population.
Crossover is a genetic operator that creates a new individual called

RTNS 2020, June 9-10, 2020, Paris, France

301 l.\ A
\ B
\
251 \ - D
\
\.
201 LN
N
\\
N
154 N
\\
N
N
10 L.
5 [—
““““““ "
1 2 3 4 5 6 7 8 9

Figure 2: Example of two sets A and B with the set D of all
non-dominated points of the union of sets (AU B).

child combining some individuals from the current population,
which are also called parents. Another genetic operator is mutation
that produces a new individual by changing some characteristics of
a known one. As a final step at each iteration, a selection operator
chooses the best individuals for the next generation. An appropri-
ate stopping criterion for such algorithms is usually a predefined
number of function evaluations or a maximum generation number.

To evaluate the performance of a multi-objective algorithm,
quality indicators are often used. Since the true Pareto front is
unknown in the function inlining problem described in Section 4.2,
we define a new set D that represents the best available approxima-
tion of the true Pareto front. Assuming that A and B are two Pareto
fronts returned by different algorithms, we define the set D as a set
of all non-dominated points of the union of sets A and B, AU B, as
shown in Figure 2.

Since a Pareto front returned by an evolutionary algorithm might
have some duplicates of a solution, we introduce the operator
Unique(-) that returns the number of unique elements in the Pareto
front. Meanwhile, the operator | - | represents the total size of a set.

Non-dominance ratio is a quality indicator that represents the
ratio of non-dominated solutions in each set with respect to the set
D. For the set A it is defined as follows:

_ Unique(AN D)

NRy
DI

®)

Another quality indicator that describes a total number of domi-
nated points in a set is called coverage:

©

The last quality indicator that we consider is internal non-dominance

ratio. It is defined similar to the non-dominance ratio:
_ Unique(AN D)

INRy4 T

(10)
However, INR 4 describes the ratio of the unique non-dominated
points with respect to the set A itself, whereas NRy4 represents the
ratio with respect to the set D.

The values of the considered quality indicators are always in
the interval [0, 1]. Besides, NR and INR are operators which to be
maximized, whereas C has to be minimized.

K. Muts, H. Falk

4.2 Function Inlining

Function inlining is a well-known compiler-based optimization that
can be used to minimize the WCET of a program. The reduction of
WCET is achieved by replacing a function call by the body of the
callee. Arguments corresponding to function parameters are stored
in variables. Additionally, the function call and return instructions
together with parameter handling are removed from the code that
yields the reduction of calling overhead and a smoother pipeline
behavior. However, duplicates of the function body lead to an in-
creasing code size. Furthermore, due to the insertion of additional
variables, more registers are required and therefore, the register
pressure increases. As a result, the performance of the program as
well as energy consumption may be degraded.

For example, let us apply function specialization to optimize
the benchmark codecs_dcodhuff [4]. If we consider only the code
size as an objective to be minimized, then, obviously, the solution
is the original program without any modifications, since function
specialization always increases the code size. Minimizing only with
respect to WCET leads to 9 % decrease in WCET, but code size and
energy consumption increase by 51 % and 25 %, respectively. Finally,
optimizing only energy consumption increases WCET by 10 % and
code size by 61 %, however, energy consumption decreases only by
5 %. As the example suggests, optimizing only one objective is not
sufficient to get a good final result. For this reason, we formulate
function specialization as a multi-objective problem aiming to find
the best trade-offs between the objectives.

In our approach, binary N-dimensional vectors x represents the
search space X of the problem with N corresponding to the number
of function calls in the code:

x = (x1,%2,...,XN),
X_{x,-e{O,l} Vi:l,Z,...,N.} (1)
Every x; stands for a function call (of any function) in the input
source code. If x; is equal to 1, then the function is to be inlinined
at this place of the code, and x; equals to 0, otherwise.

We make some natural assumptions collecting candidates for
inlining:

o the function is not recursive;

o the argument list of the function does not contain a variable
number of arguments;

e the function does not declare any static symbols.

Furthermore, as already mentioned, we consider a 3-dimensional
objective function U:

U = (WCET, Code Size, Energy Consumption) (12)
Then, we formulate the optimization problem as follows:

)r(n€1§ U(x). (13)

In our approach, we do not consider any other constraints for the
objectives, because we aim to find the full set of possible trade-offs
between the objectives.

Durillo et al. [3] showed that the most promising evolutionary
algorithm, which outperforms widely used SPEA2 and NSGA — I1
algorithms, is the third version of Generalized Differential Evolution
(GDE3) [9]. Moreover, according to the current state of the art, GDE3
is the best choice in multi-criteria optimization. Therefore, we utilize
GDES3 as a basis for our approach. However, the standard GDE3

Multi-Criteria Function Inlining for Hard Real-Time Systems

handles real-valued variables, i.e., the search space of the problem
is a subspace of a real-valued vector space. Hence, we cannot apply
GDES3 directly to binary optimization problems. Meanwhile, as
described above (cf. (11)), we formulate function inlining as a binary-
encoded problem. For this reason, we make some modifications of
the GDE3 algorithm. The difficulties to apply GDE3 to a binary-
encoded problem occur at the mutation stage of the algorithms,
therefore, we describe this part of GDE3 in details.

In the context of any evolutionary algorithm (cf. Algorithm 1),
mutation describes the process of creating a new individual from
some selected individuals from the current population. At this stage
of the algorithm, it might happen that a new individual is not in the
search space of the problem. GDE3 suffers from this problem in our
case, since the mutation operator selects three random, except mu-
tually different, individuals x!, x2, x3 from the current population
and creates a new vector x™%? as follows:

MU= 3 L F e (x! - x?), (14)

where F € Ry is a scaling factor of the algorithm. The term F -
(x! — x?) defines the magnitude and direction of the mutation [9].

Ifx!, x2, and x3 in (14) are binary vectors, then x4t isnot neces-
sary a binary vector any more, since F is a real scalar parameter. To
tackle this issue, we utilize a probability estimation operator P. It is a
sigmoid function which is widely used to map a real variable into the
interval [0, 1]. The probability estimation operator was originally
proposed by Wang et al. [22] for a single-objective optimization
problem. We integrate this operator into the multi-objective GDE3
algorithm. For the vector x™%! = (xl”””,xg””, e xﬁ"t) with
xj'."“t € R, operator P is defined as follows:

1
(2b><(xj?"“’—0.5))/(1+2F) ’

P(x]’-’””) =

(15)

1+e

where b € Ry¢ is a bandwidth parameter, which describes the
smoothness of the operator P.

Then, a new binary vector bx = (bx1, bxy, ..., bxN) is generated
as in (16),

Xj = (16)

1, if rand < P(xj’.""t),
0, otherwise,

where rand € [0, 1) is a random number.
All other parts of GDE3 algorithm are preserved and described
further. First, we introduce the following notation:

e X is a search space;

e NP is the maximum number of individuals in a population;
o Individuals are N-dimensional vectors;

e G C X is the current population.

Then at every new iteration (creating a new population), a new
individual # withi = 1,2,..., NP is created as follows [9]:

(1) Select randomly three individuals %!, %2, and %* from the
current population G that are mutually different and different
from x* € G;

(2) Apply mutation operator to the individuals #!, %, and z° as
described in (14)-(16) to get a new vector bx’ € RN

(3) Randomly select j,4pq € {1,2,...,N};

RTNS 2020, June 9-10, 2020, Paris, France

(4) Derive a trial vector u’ = (ui, ué, et u}\,) as in (17)

bx]l:, ifrandj <CR Vj :jrand7

Vi< N u]".:{ 17)

x]’:, otherwise,
where rand; € [0,1) is a random number and CR € Rx¢ is a
crossover parameter, which controls the rotational invariance
of the search [9].

(5) Select the individual %’ for the next population:

P {u’, iful < ?ci, (1)
x!, otherwise.

Scaling factor F, bandwidth parameter b, and crossover parame-
ter CR from (14), (15), and (17), respectively, are control parameters
defined by a user. They are fixed for all iterations of the algorithm.

Moreover, to evaluate the results returned by the proposed mo-
dified GDE3 algorithm, we compare them to another evolutionary
algorithm, MBPOA [23], since MBPOA was designed for binary-
encoded problems and also has GDE3 algorithm as a basis. We apply
MBPOA to the considered function inlining problem without any
modifications.

5 EVALUATION

We perform all experiments on an Intel Xeon Server using the
WCET-aware C compiler framework WCC for the ARM7TDMI
micro-controller in the thumb mode. Moreover, the optimization
considered in the paper, function inlining, shows the most signifi-
cant improvement of the final executable in combination with other
optimizations that were impossible due to function boundaries, e.g.,
constant propagation and dead code elimination. Therefore, the
optimization level O2 was considered performing all evaluations.
Finally, since the ARM7TDMI micro-controller implies no hardware
floating point unit, the software libraries were used to tackle this
issue. Hence, we considered functions of the floating point libraries
also as candidates for the inlining.

We use for evaluation the benchmarks from the public available
test suites PolyBench, MediaBench, MRTC, DSPstone, and UTDSP
with annotated loop bounds from the TACLeBench project [4].

In addition to the assumptions in Section 4.2, during the evalua-
tions the code size limit of a function to be inlined is set to 5000
bytes. The last assumption prevents the inlining of too "heavy"
functions and decrease the search space of the problem.

As described in Section 4.2, we utilize the modified GDE3 and
MBPOA algorithms to solve the multi-objective function inlining
problem (13). For both evolutionary algorithms, modified GDE3
and MBPOA, and for every benchmark, the population size NP is
set to 20 and the number of algorithm’s iterations NT is defined by

2N
NI = min |10, 5 —11, 19
mm(max(NP)) (19)
where N is the dimension of the search space. Table 1 presents the
dimension of the search space for each benchmark.

In addition, MBPOA algorithm has one control parameter, namely
crossover, whereas the modified GDE3 has three parameters: scaling
factor F, bandwidth b, and crossover CR (cf. (14), (15), and (17)). Since
the value of each control parameter is crucial for the performance
of the algorithm, we provide a careful sensitivity analysis to identify

RTNS 2020, June 9-10, 2020, Paris, France K. Muts, H. Falk

Table 1: Evaluation results. N is the dimension of the search space or, in other words, the number of function calls. The run-
time corresponds to a single run of the evolutionary algorithm, whereas the best parameter values are the control parameter
values for which the evolutionary algorithm shows the best performance in terms of quality indicators. Algorithms’ control
parameters: CR is crossover parameter, b is bandwidth, and F is scaling factor. Quality indicators: C is coverage (9), NR is non-
dominance ratio (8), and INR is internal non-dominance ratio (10).

Runtime (sec) Best Parameters Values Quality Indicators

Benchmark N

GDE3 MBPOA GDE3 MBPOA C NR INR
(CR, b, F) (CR) GDE3 MBPOA GDE3 MBPOA GDE3 MBPOA
adpcm_g721_board_test 23 177 179 (0.1, 5.0, 2.0) 0.1 0.7500 0.9500 0.0588 0.0102 0.3000 0.0556

adpem_g721_verify 25 200 186 (0.1, 500.0, 10.0) 0.1 0.5500 0.7000 0.0756 0.0435 0.5294 0.2941
atax 126 235 252 (0.1, 1000.0, 1.0) 0.1 0.3000 0.5500 0.2373 0.1667 0.7000 0.4500
cholesky 128 271 277 (0.2, 500.0, 0.2) 0.5 0.4000 0.7000 0.1429 0.0811 0.6316 0.3000
cjpeg_jpeg6b_wrbmp 16 115 118 (0.5, 500.0, 2.0) 0.8 0.5000 0.6000 0.0923 0.0783 0.6000 0.4500
cnt 128 208 230 (0.3,5.0,0.2) 0.2 0.8000 0.7778 0.4000 0.2500 0.4000 0.2222
codecs_codrlel 25 47 46 (0.5, 100.0, 2.0) 0.6 0.6471 0.7500 0.0569 0.0394 0.4375 0.2941
codecs_dcodhuff 18 53 57 (0.6, 1000.0, 0.2) 0.4 0.2500 0.5000 0.0631 0.0476 0.7368 0.5500
correlation 127 245 274 (0.3,500.0, 0.2) 0.3 0.7857 1.0000 0.1200 0.0000 0.2143 0.0000
expint 125 209 223 (0.6, 50.0, 0.2) 0.6 0.0000 0.5000 0.5000 0.3333 1.0000 0.5000
fdtd-2d 126 233 253 (0.1, 20.0, 5.0) 0.1 0.2500 0.5000 0.2083 0.1493 0.7500 0.5000
fft1 131 318 323 (0.8, 20.0, 0.2) 0.6 0.5500 0.7500 0.0982 0.0549 0.5500 0.2500
floyd-warshall 126 229 249 (0.1, 20.0, 10.0) 0.1 0.3684 0.5789 0.2400 0.1739 0.6316 0.4211
gemm 125 234 251 (0.3, 1000.0, 1.0) 0.3 0.6667 1.0000 0.0870 0.0000 0.3333 0.0000
gemver 125 258 257 (0.1, 100.0, 10.0) 0.5 0.1429 04737 0.3429 0.2941 0.8571 0.5263
gsm_decode 23 470 417 (0.7, 100.0, 0.5) 0.5 0.5000 0.7500 0.0820 0.0362 0.5000 0.2500
huffc 86 173 181 (0.8, 100.0, 0.5) 0.1 0.6875 0.9444 0.0610 0.0217 0.3125 0.1111
jacobi-1d-imper 126 229 241 (0.1, 0.0, 10.0) 0.1 0.4000 0.6500 0.1412 0.0875 0.6000 0.3500
ludemp 126 251 265 (0.6, 100.0, 1.0) 0.6 0.2500 0.3077 0.4615 0.3913 0.7500 0.6923
md5 13 3 3 (0.5, 20.0, 1.0) 0.3 0.0000 0.0000 0.8500 0.9000 1.0000 1.0000
mvt 126 205 231 (0.2, 100.0, 5.0) 0.2 0.7895 1.0000 0.0976 0.0000 0.2105 0.0000
qurt 125 253 269 (0.5, 50.0, 0.2) 0.7 0.7500 0.7500 0.1579 0.0625 0.3750 0.2500
sqrt 124 245 252 (0.6, 100.0, 0.2) 0.4 0.5556 0.5000 0.2174 0.1304 0.5556 0.5000
st 129 272 283 (0.1, 500.0, 1.0) 0.1 0.6154 0.8000 0.2222 0.1538 0.4615 0.2000
trisolv 126 248 248 (0.6, 500.0, 0.2) 0.6 0.4375 0.5000 0.1875 0.1739 0.5625 0.5714
trmm 125 230 240 (0.3, 1000.0, 0.2) 0.3 0.6667 1.0000 0.0952 0.0526 0.3333 0.1667

the actual parameters’ values for each algorithm. We consider the
following possible values of parameters:

e Crossover CR € {0.1,0.2,0.3,...,0.8};
e Bandwidth b € {0, 5, 20, 50, 100, 500, 1000};
e Scaling Factor F € {0.2,0.5, 1.0, 2.0,5.0,10.0}.

The initial population of any evolutionary algorithm is defined
randomly and the results of the algorithm usually depend on the
initial population. For this reason, we repeated the experiments 5
times for different initial populations. Evaluation results consist of
quality indicator values considering all possible combinations of
control parameters in case of GDE3 algorithm or all possible values
of the crossover parameter in case of MBPOA algorithm. It means
that in total for 5 repetitions of 26 benchmarks, 44720 evaluations
were done, because of considering 336 and 8 possible configurations
of GDE3 and MBPOA algorithm, respectively.

Moreover, Table 1 shows the runtime of executing GDE3 or
MBPOA algorithm once. The results for both algorithms are almost
the same, because most of the runtime is taken to evaluate the

objectives by the static WCET analyzer. However, due to a quite
large runtime for almost all benchmarks, the extensive evaluations
of the algorithms are problematic. It should be mentioned, we had
to exclude a lot of benchmarks, which are not listed in the table,
from the evaluations due to an extremely large runtime. For the
same reason, we set the population size just to 20 individuals as
described above, despite the fact that for the benchmarks with a
large search space, it is not enough in order to find the Pareto front.

Choosing the best values for the GDE3 control parameters is very
difficult, since all possible combinations of control parameters have
to be examined. Figure 3 presents the results for 10 combinations
of the algorithm’s parameters which result to the best values of the
quality indicators for all benchmarks in average. The best results in
terms of coverage and internal non-dominance ratio, GDE3 achieves
with crossover CR = 0.7, bandwidth b = 500, and scaling factor
F = 0.5 as shown in Figures 3a and 3c. However, the largest value
for the non-dominance ratio is returned when bandwidth parameter
is set to 100 according to Figure 3b.

Multi-Criteria Function Inlining for Hard Real-Time Systems

0.0 IIIIIIIIII
N N N D) N D D))]
R S DR O B TSNS

NN o> & o> &
S N R P S SRS RN
% O A K K

| R o A A A . . X
N0 e e e ¢ P

Coverage
o o o o o o o
N w = w o ~ [e-]

o
=

/
G}

GDE3 Parameters
(Crossover, Bandwidth, Scaling Factor)

(a) Coverage.

0.200

0.175
0.150
0.125
0.100
0.075
0.050
0.025
0.000
N I I I A S

o o SN A S N S o
I S S

RS 0’.\‘ A o S

A O O &

Non-dominance Ratio

@3
GDE3 Parameters
(Crossover, Bandwidth, Scaling Factor)

(b) Non-dominance ratio.

AN D A N N D D N AN)
S PSP S PP S S S

SOOI o SO o
O
< :

Internal Non-dominance Ratio
© o o o o o o
= = N N w W N
o w o wv o w o

o
o
@

o
o

.00

AT
NS S RN

GDE3 Parameters
(Crossover, Bandwidth, Scaling Factor)

(c) Internal non-dominance ratio.

Figure 3: Quality indicators for GDE3 control parameters.
The results show the average over all considered bench-
marks evaluated 5 times for different initial populations.

RTNS 2020, June 9-10, 2020, Paris, France

mes INR

mm C NR
0.8
0.6
0.4
0.0 I
0.1 0.2 0.3 0.5 0.6 0.7 0.8

0.4 .
MBPOA Crossover

Quality Indicator

o
N

Figure 4: Quality indicators for different values of the
crossover parameter in MBPOA algorithm. C is coverage (9),
NR is non-dominance ratio (8), and INR is the internal non-
dominance ratio (10). The results show the average over all
considered benchmarks evaluated 5 times for different ini-
tial populations.

Figure 4 shows the average values of quality indicators for all
benchmarks considering different values of the parameter crossover
during evaluation of MBPOA algorithm. We consider the quality
indicators, coverage C, non-dominance ratio NR, and internal non-
dominance ratio INR described in Section 4.1. The results suggest
that the best crossover value for the MBPOA algorithm is 0.7, since
in this case, the quality indicators NR and INR are maximal and C
gets the smallest value.

To find the final values of control parameters for both algorithms,
we additionally analyze the general dependency of the quality indi-
cators from the control parameters. Since both algorithms, GDE3
and MBPOA, depend on the control parameter crossover, Figure 5a
presents an estimate of the central tendency and a confidence inter-
val for the considered quality indicators as functions of crossover.
The central tendency of all quality indicators in the case of MBPOA
is better than using GDE3 algorithm. Moreover, the figure also
suggests to choose the crossover parameter equal to 0.7 for both
algorithms, that is consistent with the results in Figures 3 and 4.

Additionally, GDE3 algorithm also depends on the control pa-
rameters bandwidth and scaling factor. Figures 5b and 5c¢ show
results for parameters bandwidth and scaling factor, respectively.

Figure 5b shows that the values of the quality indicators for
bandwidth greater than 100 remains almost unchanged, therefore,
Figure 3b suggests the value 100 for bandwidth parameter, whereas
in Figures 3a and 3c, the algorithm achieves the best behavior with
bandwidth equal to 500.

Regarding the results in Figure 5c, the minimum of coverage
and the maximums of non-dominance ratio as well as internal non-
dominance ratio are at scaling factor equal to 0.5 that explains the
best value for the scaling factor in Figure 3.

Based on the analyses above, we fix the control parameters of
both algorithms to the best found values, namely:

RTNS 2020, June 9-10, 2020, Paris, France

Coverage GDE3
Non-dominance Ratio GDE3
Internal Non-dominance Ratio GDE3

—— Coverage MBPOA
—— Non-dominance Ratio MBPOA
Internal Non-dominance Ratio MBPOA

|

Value of Quality Indicator

-
S
2 0.6
B2
©
£
Zoa
©
=]
o
0.2
0.0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Crossover
(a) Quality indicators as functions of crossover.
Coverage
Internal Non-dominance Ratio
Non-dominance Ratio
0.9
0.8
0.7
.
206
©
2
T 0.5
<
204
E
o] 0.3
0.2
0.1
oo o o o
NN O o o
— n o
—
Bandwidth
(b) Quality indicators as functions of GDE3’s bandwidth.
Coverage
Internal Non-dominance Ratio
Non-dominance Ratio
0.8
0.7
.
O 0.6
2
©
o
5 05
£
;‘ 0.4
s
& 0.3
0.2
0.1
N © < e <
oo o~ n o
—

Scaling Factor

(c) Quality indicators as functions of GDE3’s scaling factor.

Figure 5: The behavior of quality indicators. The results
show the average over all considered benchmarks evaluated
5 times for different initial populations.

K. Muts, H. Falk

0.8 GDE3
MBPOA

0.7

0.6

0.5

0.4

Non-dominance Ratio Internal
Non-dominance Ratio

Coverage

Quality Indicator

Figure 6: Comparison of quality indicators for GDE3 and
MBPOA. The results show the average over all considered
benchmarks evaluated 5 times for different initial popula-
tions.

e GDE3: CR=10.7,b =500, F = 0.5;
e MBPOA: CR =0.7.

We decide to set the bandwidth of GDE3 algorithm equal to 500
due to results in Figures 3a and 3c, and since, as we have shown in
Figure 5b, changing the bandwidth values between 100 and 1000
has little impact on quality indicators.

In Figure 6, we present the comparison of quality indicators for
the fixed control parameters. It shows that the results for both al-
gorithms are almost the same. Nevertheless, GDE3 outperforms
MBPOA a little bit in terms of coverage and internal non-dominance
ratio, i.e., that performing GDE3 the ratio of non-dominated solu-
tions on the returned Pareto front is larger than in case of MBPOA
algorithm. However, MBPOA shows a better result in terms of
non-dominance ratio, i.e., MBPOA returns in general more non-
dominated solutions than GDE3.

In Figure 7, we show the results for some benchmarks fixing
the values of parameters and repeating experiments 5 times. To
present the results, we chose the benchmarks with different sizes
of the search space. Some of the selected benchmarks, namely
gsm_decode, cjpeg_jpeg6b_wrbmp, codecs_codrlel, codecs_dcodhuff,
and md5 have the dimensions of the search spaces less than 25
(cf. Table 1), whereas huffc, qurt, st, and trisolv have much larger
search spaces with the dimensions 86,125,129, and 126, respec-
tively. MBPOA algorithm returns a lit bit better Pareto front with
respect to the non-dominance ratio for the smallest benchmark md5
with the search space of the size 13, whereas GDE3 shows better
coverage and internal non-dominance ratio in this case. However,
for the benchmark qurt, st, and trisolv, which have the largest search
spaces with the dimensions 125, 129, and 126, respectively, GDE3
outperforms MBPOA. Another fact, which is worth to mention, is
related to the comparison of the benchmarks gsm_decode and trisolv
with search space dimensions 23 and 126, respectively. Nevertheless

Multi-Criteria Function Inlining for Hard Real-Time Systems

Coverage GDE3
Coverage MBPOA
Internal Non-dominance Ratio GDE3

Internal Non-dominance Ratio MBPOA
Non-dominance Ratio GDE3
Non-dominance Ratio MBPOA

1.0 i
T | | I]I
.
Sos8 “ ‘ | ‘
©
- |
E0% |
> l
£04 || ‘
©
=}
L 0 O
I
0.0 [[T ak I o Wl ll-n ki }
=
e 3 5 g ¢ 5 3 % 3
¢ § 8 § 2 E ¢ %
5
z‘ o 3 il
o 3 ! £
@ 3 9 o
a] °
o S
[
Q.
T
Benchmark

Figure 7: Quality indicators for the fixed parameters:
crossover is 0.7 (for both algorithms), bandwidth is 500 and
scaling factor is 0.5. Every benchmark was evaluated 5 times
for different initial populations.

the search space of the benchmark gsm_decode is much smaller,
both algorithms show much better results for the benchmark trisolv.

In practice, setting the control parameters to the values, which
lead to the best quality indicators’ values in average, could be
enough. However, at this point it is clear that, unfortunately, it is
impossible to find unique values for control parameters that lead to
the best behavior for all benchmarks. Additional evidence for this
is the results presented in Table 1. Column Best Parameters Values
lists the best values for the control parameters for each bench-
mark. Quality indicators presented in Table 1 show that in case
of choosing control parameters specifically for every benchmark
GDES3 outperforms MBPOA in all benchmarks. The reason for this
is that GDE3 has more control parameters that can be set by a user
and allow to control the behavior of the algorithm better. To sum
up, on the one hand, GDE3 has 3 control parameters that have to be
defined by a user, whereas MBPOA has only one parameter. On the
other hand, selecting and setting carefully the control parameters
allows to achieve a better performance of GDE3 algorithm.

Our aim was to find all possible trade-offs between the objec-
tives and, therefore, the results of our approach cannot be directly
compared to the standard single-objective heuristics. Neverthe-
less, we present the results of the standard function inlining in
order to show the position of its solution in the search space of the
multi-objective function inlining. The standard function inlining
follows a very simple rule: a function is inlined, if its number of
expressions at high-level representation (cf. Section 3) is less than
or equal to 20. Figure 8 presents the objective values returned by the
standard function inlining, where 100 % corresponds to the results
considering the optimization level O2 without function inlining.
Moreover, recall that the true Pareto front is infeasible for the prob-
lem considered in the paper. Hence, to find the best approximation
of the true Pareto front by every considered algorithm for every
benchmark, we merge all approximated Pareto fronts returned by

RTNS 2020, June 9-10, 2020, Paris, France

Max GDE3 Max MBPOA Std Inlining
Min GDE3 Min MBPOA

—~ 140

8

5 120 i

=

o 100 ko4 1 ¥4 + A O

2 I

©

o] 80 . +

o

60
“>)(>~Q“-—<tC“UH=E‘—Q}U‘—QmU‘,—_“:U28
BB ¥ ES 2SSV ESESSES2EZEST 0 E
g Q2 ST O XS v EVUEEZ T 5
T 7 o = 0 0Qg ¥ c O o @ - | i
— < = oo @ w 2 o O 5 =2
SN U g w7 5 y L1
o~ © 0w k<] £ L
() o Q0 B @ o)
— @ T 0 =l o o
Ne & 8% = 8
o3 o S =
o)
es &
& 3}
©
©
Benchmark
(a) Worst-case execution time (WCET).
Max GDE3 Max MBPOA Std Inlining
Min GDE3 Min MBPOA

95225

& 200

«

[}

U175

o

Y 150

o

>

S 125 L + 1 b + + } + 4+ 4+ 4 4+ 4

© i

[}

o 100 4 t + +
GCEPeEIESLREEISEEeaELuRE
EERysSYscsaosF S E20525egETa QE
19 QL2 T T O X2 wao ELVEEY C 5
T 7 o = 00 ¥ T c oo 9 T3 =1
S 23 88¢Te gPgs T2
o~ Y o 07T 5 T L1
ar~ © [o £ L
1o o 9 O > a 2
— I) T 9 o o o
Re & 8% = 8
o3 o S -

5 9]
E® &
a =)
el
©
Benchmark
(b) Code size.

’\E Max GDE3 Max MBPOA Std Inlining

< Min GDE3 Min MBPOA

c

49180

S 160

£

3140

c

o 120

o

& 100 T T4 F&a® O t+ 4 t f

g §

2 g0

[}

o 60 4

>

2

kol §ERTEE S SESETESEEEBEEET2E

x ST 89S TS o5 S EZ293 SEETH a £
1¢®0P 535w XD o EYLEZ =]
T 7 [SE 0 0Qg ¥ c oo 9 T3 =]
o~ £ > O O £ - ES o O 5 =
o Vg w6 d A
ar~ © O a8 ° £ o
I o o v v > n Qo
— @ k3R] = o o
NE & 8% = g
U\Ia g o -
£ 3 a
8 o
o
©

Benchmark

(c) Energy consumption.

Figure 8: Minimum and maximum values of the objectives
in the approximated Pareto front and the objectives’ values
corresponding to the standard function inlining.

RTNS 2020, June 9-10, 2020, Paris, France

GDE3 or MBPOA algorithm after 5 repetitions and select all non-
dominated points of the merged sets. Eventually, in Figure 8, we
present the extreme solutions, i.e., the maximum and minimum
values for the objectives, of the sets of non-dominated points for
each algorithm. The results of both algorithms are exactly the same
as shown in the figures.

Figure 8a shows that in terms of WCET for many considered
benchmarks, the standard function inlining returns the WCET that
corresponds to the lower bound of the approximated Pareto front for
both algorithms. However, for the benchmarks cjpeg_jpegé6b_wrbmp,
codecs_codrlel, and qurt, both evolutionary algorithms were not
able to find the smallest WCET value returned by the standard
inlining.

In case of code size, Figure 8b demonstrates that the values of
the standard function inlining are always very close to the smallest
code size value of the approximated Pareto front. Nevertheless,
for the benchmark codecs_codrlel, the code size returned by the
standard function inlining is almost equal to the maximum value.
Meanwhile, considering the benchmark huffc, the evolutionary
algorithms could not find the best value corresponding to the result
of the standard optimization.

The last considered objective is energy consumption. As shown
in Figure 8c, on the one hand, for many benchmarks the standard
function inlining results in the almost maximal values. However, on
the other hand, for some benchmarks, the standard function inlining
result is not in the range of minimum and maximum values of the
found approximated Pareto front. Moreover, for the benchmark
huffc, the standard function inlining returns a very large value for
the energy consumption, whereas the code size and WCET are small.
However, for the benchmark md5, only the code size coincides with
the lower bound of the approximated Pareto front, whereas WCET
is very close to the original value and energy consumption increases
by more than 20 %. Another interesting result is considering the
benchmark fdtd-2d. The WCET and code size for this benchmark
are equal to the smallest values of the objectives and the energy
consumption is much smaller than the value found by evolutionary
algorithms. Obviously, the standard function inlining results in
this case to the extreme solution from the Pareto front that the
algorithms did not find.

To summarize, the results from Figure 8 show that for the consi-
dered benchmarks the standard function inlining results in a solu-
tion that is very close to the point on the Pareto front which has
small WCET and code size values. Meanwhile, the energy consump-
tion of the standard approach is usually very close to the original
value of the input problem which also corresponds the upper bound
of the found approximation of the Pareto front. Moreover, in some
cases, the standard function inlining results in a solution from
the approximated Pareto front which the evolutionary algorithms
were not able to find. One of the reasons for this is the limitation
described before that we set the population size and the number
of generations for the evolutionary algorithms due to the large
runtime of an algorithm execution (cf. Table 1). Unfortunately, in
this case an evolutionary algorithm cannot fully explore the search
space in order to find the best approximation of the true Pareto
front. However, the standard function inlining cannot provide a user
with a set of possible trade-offs between the objectives, whereas,
as we have seen, function inlining formulated as a multi-objective

K. Muts, H. Falk

problem results in a solution set which describes many different
scenarios of the compiled program.

6 CONCLUSION

We have formulated the well-known compiler-based optimization
function inlining as a multi-objective optimization problem. WCET,
code size, and energy consumption were considered as objectives for
the optimization. The results show that three considered objectives
cannot be optimized simultaneously, because they contradict each
other. For this reason, we exploited the multi-objective evolutionary
algorithms to find the best trade-off solutions. We presented the
results for two evolutionary algorithms, namely GDE3, that was
modified in order to solve a binary-encoded problem, and MBPOA.

Both algorithms contain user defined control parameters. We
made the choice of the best values of them based on experiments
using benchmarks. After fixing the values of the control parame-
ters, we demonstrated the comparison of the algorithms. For some
benchmarks, MBPOA algorithm outperforms GDE3. However, we
have shown that carefully chosen control parameters allow GDE3
to return a better solution set than MBPOA.

Both evolutionary algorithms are able to find the trade-offs be-
tween WCET, code size, and energy consumption. Moreover, we
compared the results of the standard function inlining with the ap-
proximated Pareto front found by evolutionary algorithms. In some
case the standard function inlining resulted to a non-dominated
solution that any considered evolutionary algorithm did not find.
One of the reasons for this is that an approach, which uses evolu-
tionary algorithms, requires extensive evaluations of the objectives,
whereas the computation of WCET and energy consumption at
compile time is very time-consuming. For this reason, trying to
find the values for the control parameters that have great impact
on the algorithm’s performance, first of all, only limited number
of benchmarks can be utilized, secondly, the population size for
every algorithm has to be limited by a small value. On the one hand,
MBPOA has just one user defined control parameter in contrast to
the modified GDE3 that has three parameters. On the other hand,
choosing the control parameters specifically for every benchmark
allows GDE3 to show the more promising results comparing to
MBPOA, because more control parameters give more freedom for
the user to control the behavior of the algorithm. In addition, due to
expensive evaluations of the objectives, the experiments for quite
large benchmarks are also almost impossible.

One possible way to overcome the issue described above is to
minimize the number of expensive evaluations. E.g., the objectives’
values can be predicted at some points of the search space using
a surrogate model, which is a fast approximation of the original
objective function in terms of evaluations. This approach is consi-
dered as a possible extension of the proposed multi-criteria function
inlining. Predicting objectives’ values and making smart decisions
about the points at which the accurate expensive evaluations are
required may lead to decrease in runtime of the optimization and
enable experiments for larger benchmarks.

Besides, function inlining is just one optimization that we have
considered as a multi-criteria problem. Other compiler-based op-
timizations also have a great potential to be reformulated and
analyzed in this direction.

Multi-Criteria Function Inlining for Hard Real-Time Systems

ACKNOWLEDGMENTS

This work received funding from Deutsche Forschungsgemein-
schaft (DFG) under grant FA 1017/3-1 .

REFERENCES

[1] AbsInt Angewandte Informatik, GmbH. 2018. aiT Worst-Case Execution Time

[2

(3

[4

[11

[12
[13

]

=

=

]

]
]

[14]

(15

[16

[17

[18

[19

[20

]

]

]

Analyzers.

W.R. A. Dias and E. D. Moreno. 2012. Code Compression in ARM Embedded
Systems Using Multiple Dictionaries. In Proceedings of the 15th IEEE International
Conference on Computational Science and Engineering (Nicosia, Cyprus). 209-214.
https://doi.org/10.1109/ICCSE.2012.36

J.J. Durillo, A. J. Nebro, C. A. C. Coello, J. Garcia-Nieto, F. Luna, and E. Alba.
2010. A Study of Multiobjective Metaheuristics When Solving Parameter Scalable
Problems. IEEE Transactions on Evolutionary Computation 14, 4 (2010), 618-635.
https://doi.org/10.1109/TEVC.2009.2034647

H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange, M. Schoe-
berl, R. B. Sorensen, P. Wagemann, and S. Wegener. 2016. TACLeBench: A
Benchmark Collection to Support Worst-Case Execution Time Research. In Pro-
ceeding of the 16th International Workshop on Worst-Case Execution Time Analysis
(OASIcs), Vol. 55. 2:1-2:10. https://doi.org/10.4230/OASIcs. WCET.2016.2

H. Falk and P. Lokuciejewski. 2010. A Compiler Framework for the Reduction of
Worst-Case Execution Times. Real-Time Systems 46, 2 (2010), 251-300. https:
//doi.org/10.1007/s11241-010-9101-x

E.S. Helan, Mr. P.M. Sandeep, Mr.V.Suresh Babu, and Mr. M. Varatharaj. 2017.
Compression and Decompression of Embedded System Codes. International
Journal of Engineering Trends and Technology 45, 7 (2017), 325-330. https:
//doi.org/10.14445/22315381/IJET T-V45P268

S. Jadhav and H. Falk. 2019. Multi-Objective Optimization for the Compiler of
Real-Time Systems Based on Flower Pollination Algorithm. In Proceedings of the
22nd International Workshop on Software and Compilers for Embedded Systems
(SCOPES °19). 45-48. https://doi.org/10.1145/3323439.3323977

J.Knowles, L. Thiele, and E. Zitzler. 2006. A Tutorial on the Performance Assessment
of Stochastic Multiobjective Optimizers. Technical Report. ETH Zurich.

S. Kukkonen and J. Lampinen. 2005. GDE3: the third evolution step of gener-
alized differential evolution. Proceedings of the IEEE Congress on Evolutionary
Computation 1 (2005), 443-450. https://doi.org/10.1109/CEC.2005.1554717

P. Lokuciejewski, F. Gedikli, P. Marwedel, and K. Morik. 2009. Automatic WCET
Reduction by Machine Learning Based Heuristics for Function Inlining. In Pro-
ceedings of the Workshop on Statistical and Machine Learning Approaches to Archi-
tecture and Compilation (SMART °09). 1-15. https://doi.org/10.1.1.222.9895

P. Lokuciejewski, S. Plazar, H. Falk, P. Marwedel, and L. Thiele. 2011. Approximat-
ing Pareto optimal compiler optimization sequences - a trade-off between WCET,
ACET and code size. Software: Practice and Experience 41 (2011), 1437-1458.
https://doi.org/10.1002/spe.1079

P. Marwedel. 2006. Embedded System Design. Springer-Verlag, Berlin, Heidelberg.

K. Muts, A. Luppold, and H. Falk. 2018. Multi-Criteria Compiler-Based Opti-
mization of Hard Real-Time Systems. In Proceedings of the 21st International
Workshop on Software and Compilers for Embedded Systems (SCOPES ’18). 54-57.
https://doi.org/10.1145/3207719.3207730

K. Muts, A. Luppold, and H. Falk. 2019. Compiler-Based Code Compression
for Hard Real-Time Systems. In Proceedings of the 22nd International Workshop
on Software and Compilers for Embedded Systems (SCOPES ’19). 72-81. https:
//doi.org/10.1145/3323439.3323976

D. Oehlert, A. Luppold, and H. Falk. 2017. Bus-aware Static Instruction SPM
Allocation for Multicore Hard Real-Time Systems. In Proceedings of the 29th
Euromicro Conference on Real-Time Systems (LIPIcs). 1:1-1:22. https://doi.org/10.
4230/LIPIcs.ECRTS.2017.1

D. Oehlert, S. Saidi, and H. Falk. 2019. Code-Inherent Traffic Shaping for Hard
Real-Time Systems. ACM Transactions on Embedded Computing Systems 18, 5s
(2019), 108:1-108:21. https://doi.org/10.1145/3358215

J. Pallister, S. J. Hollis, and J. Bennett. 2013. Identifying Compiler Options to
Minimize Energy Consumption for Embedded Platforms. Comput. 7. 58, 1 (2013),
95-109. https://doi.org/10.1093/comjnl/bxt129

S. S. Pinter and I. Waldman. 2007. Selective Code Compression Scheme for
Embedded Systems. In Transactions on High-Performance Embedded Architectures
and Compilers 1. 298-316. https://doi.org/10.1007/978-3-540-71528-3_19

M. Roth, A. Luppold, and H. Falk. 2018. Measuring and Modeling Energy Con-
sumption of Embedded Systems for Optimizing Compilers. In Proceedings of the
21st International Workshop on Software and Compilers for Embedded Systems
(SCOPES ’18). 86-89. https://doi.org/10.1145/3207719.3207729

V. Tiwari, S. Malik, and A. Wolfe. 1994. Power Analysis of Embedded Software: A
First Step towards Software Power Minimization. IEEE Tranaction on Very Large
Scale Integration Systems 2, 4 (1994), 437-445. https://doi.org/10.1109/92.335012

[21]

[22]

(23]

[25]

RTNS 2020, June 9-10, 2020, Paris, France

P. Wigemann, T. Distler, T. Honig, H. Janker, R. Kapitza, and W. Schréder-
Preikschat. 2015. Worst-Case Energy Consumption Analysis for Energy-
Constrained Embedded Systems. In Proceedings of the 27th IEEE Euromicro Confer-
ence on Real-Time Systems (ECRTS ’15). 105-114. https://doi.org/10.1109/ECRTS.
2015.17

L. Wang, X. Fu, Y. Mao, M. Menhas, and M. Fei. 2012. A novel modified binary
differential evolution algorithm and its applications. Neurocomputing 98 (2012),
55-75. https://doi.org/10.1016/j.neucom.2011.11.033

L. Wang, H. Ni, W. Zhou, P. M. Pardalos, J. Fang, and M. Fei. 2014. MBPOA-based
LQR controller and its application to the double-parallel inverted pendulum
system. Engineering Applications of Artificial Intelligence 36 (2014), 262 — 268.
https://doi.org/10.1016/j.engappai.2014.07.023

L. Woérteler, M. Grossniklaus, C. Griin, and M. H. Scholl. 2015. Function Inlining
in XQuery 3.0 Optimization. In Proceedings of the 15th Symposium on Database
Programming Languages. 45-48. https://doi.org/10.1145/2815072.2815079

C. Xian, Y.-H. Lu, and Z. Li. 2007. Energy-aware Scheduling for Real-time
Multiprocessor Systems with Uncertain Task Execution Time. In Proceedings of
the 44th Annual Design Automation Conference (DAC 07). 664-669.

https://doi.org/10.1109/ICCSE.2012.36
https://doi.org/10.1109/TEVC.2009.2034647
https://doi.org/10.4230/OASIcs.WCET.2016.2
https://doi.org/10.1007/s11241-010-9101-x
https://doi.org/10.1007/s11241-010-9101-x
https://doi.org/10.14445/22315381/IJETT-V45P268
https://doi.org/10.14445/22315381/IJETT-V45P268
https://doi.org/10.1145/3323439.3323977
https://doi.org/10.1109/CEC.2005.1554717
https://doi.org/10.1.1.222.9895
https://doi.org/10.1002/spe.1079
https://doi.org/10.1145/3207719.3207730
https://doi.org/10.1145/3323439.3323976
https://doi.org/10.1145/3323439.3323976
https://doi.org/10.4230/LIPIcs.ECRTS.2017.1
https://doi.org/10.4230/LIPIcs.ECRTS.2017.1
https://doi.org/10.1145/3358215
https://doi.org/10.1093/comjnl/bxt129
https://doi.org/10.1007/978-3-540-71528-3_19
https://doi.org/10.1145/3207719.3207729
https://doi.org/10.1109/92.335012
https://doi.org/10.1109/ECRTS.2015.17
https://doi.org/10.1109/ECRTS.2015.17
https://doi.org/10.1016/j.neucom.2011.11.033
https://doi.org/10.1016/j.engappai.2014.07.023
https://doi.org/10.1145/2815072.2815079

	Abstract
	1 Introduction
	2 Related Work
	3 WCET-aware C compiler framework
	4 Multi-Objective Function Inlining
	4.1 Multi-Objective Optimization Problem
	4.2 Function Inlining

	5 Evaluation
	6 Conclusion
	Acknowledgments
	References

