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ABSTRACT
A benefit with traditional static analysis approaches to single criti-
cality hard real-time systems is that the uncertainties, and hence
confidence, associated with timing requirements being met are bet-
ter understood than Measurement-Based Timing Analysis (MBTA)
approaches. In brief, failures are mostly accounted for by human er-
rors or randomhardware failures.With the introduction ofmeasurement-
based approaches to timing analysis to help deal with more ad-
vanced processors, the situation is much more complex. The com-
plexity comes from new sources of epistemic failures: imperfect
timing measurements from the system, approximations in the anal-
ysis, and the conscious decision that parts of the system are not
always guaranteed to be scheduled in a hard real-time manner.
The goal of this paper is to establish some understanding of the
uncertainties based on a proposed industrial approach to MBTA
and consequently how confidence in the system’s timing measures
can be managed. More specifically understanding the epistemic
uncertainties associated with measures used for timing analysis
concentrating on whether it could have been foreseen that: further
testing with a given method could have avoided failures; and defi-
ciencies with the current testing method could have been predicted.
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1 INTRODUCTION
There are a wide variety of models for mixed-criticality scheduling.
A pre-requisite for all of these is that reliable execution times are
available for the Software Under Test (SUT) and from these values
forCLo ,CHi can be deduced.CLo is theWorst-Case Execution Time
(WCET) of all jobs in normal mode and CHi may be the WCET for
high-criticality jobs after a functional mode change has occurred
into High-Criticality Mode (HCM). As motivated by Graydon [13]
any time a different set of tasks are scheduled, a functional mode
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change is considered to have occurred and the set of tasks that
execute at any given time is a functional mode.

To date, all work that we are aware of has not considered how
the reliability of execution times can be demonstrated, and howCLo
and CHi are determined. The general academic assumption is CLo
comes from testing and may be optimistic. CHi would then come
from of pessimistic form of analysis. An industrial perspective from
Law [5] is that both CLo and CHi could be obtained by the same
data, however CHi could feature paths through the SUT that are
only executed under exceptional circumstances, e.g. when there
are hardware faults, as well as by the application of pessimistic
WCET analysis to the measurements. However the values are de-
termined, the confidence in the input data to the process needs
to be understood. The input data is the measurements (including
execution times) that are observed after a test vector is applied to
the SUT. The contributions of this paper are establishing methods
for determining:

(1) how reliable the timing measurements are;
(2) the likelihood of the current testing method determining

new (significant) information;
(3) if infeasible paths might exist that could be used to optimise

hybrid analysis; and
(4) whether there are sufficient measurements to support the

above.
The contributions are evaluated using an industrially-proven

technique for generating execution time measurements, however
our belief is that the contributions are generally applicable. The
structure of the paper is as follows. The paper begins with back-
ground and related work before providing an in-depth description
of the testing method used as a basis for the paper. Section 4 then
investigates whether the outputs of testing give a reliable input to
MBTA. Then, section 5 explores whether the current testing method
is likely to determine new information. Section 6 looks at ways of
determining if the softwaremight have infeasible paths based on the
available test data. Finally the paper concludes with observations of
what can be determined, methods for predicting the observations
that could be determined, and the confidence associated with those
predictions.

2 BACKGROUND AND RELATEDWORK
The related work section is split into the following three parts:
research on static analysis to help understand the main influences
on the WCET of software; methods for generating data as part of
Measurement-Based Timing Analysis; and techniques for arguing
the reliability of software.
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2.1 Static Analysis for WCET
The purpose of this section is not to provide a thorough review of
static analysis for WCET, but instead understand the main inputs to
the static analysis approaches as thesemay be considered significant
factors affecting the reliability of execution time data. The initial
work onWCET analysis concentrated on the different paths through
the program [28, 29]. In this work, there were two key influences:
the blocks that were executed and the paths subsequently taken.
These were dictated by the decisions taken at branch instructions
and the number of times around a loop.

The subsequent areas of work analysed a wide variety of pro-
cessor features including pipelines [24], caches [26] and branch
prediction [10]. Whilst all these factors influence the execution
times of software, Khan showed that their influence was much less
significant than the path through the software [16, 17]. A second
reason for not considering these further is the difficulty in obtaining
the measurements on a real target, rather than a cycle-accurate
simulator, and that taking the measurements is likely to introduce
significant measurement noise [22, 23].

2.2 Generation of Execution Time Data
The purpose of this section is to review the approaches to generating
execution times to support MBTA. The review is intended to be
independent of how MBTA is performed with the key techniques
being: to take the High WaterMark (HWM) or in other words the
maximum execution time; hybrid analysis where measurements are
combined with results from static analysis [6]; or techniques based
on probabilistic analysis [9]. It is noted that in [11] a number of
concerns from the probabilistic analysis communities were raised
that are likely to be relevant to all approaches to generating the
execution time data.

The main approaches to generating the test data have been
search-based approaches. Wegener [31] and Tracey [30] both illus-
trate how search algorithms could be used for test data generation,
particularly with regard to applications that require coverage be-
yond statement coverage.

Wegener’s early work [31] presented an investigation into how
genetic algorithms can be used to estimate the minimum and max-
imum execution times of software targeting embedded systems.
Tracey introduced a framework of tools designed to automatically
generate test data to perform dynamic analysis on an SUT. One of
the targeted analyses being the analysis of the WCET. The frame-
work introduced is primarily based on search algorithms, which
when compared to HWMs observations from system-level testing,
produced good results. However the drawback is the tool had to
achieve path coverage to obtain a sound WCET and path coverage
was not targeted by the search.

Wenzel [32] introduces an MBTA tool designed to calculate safe
WCET bounds of safety-critical software. The tool uses a combi-
nation of static analysis, and dynamic measurement of the SUT in
order to compute safe WCET bounds. The tool statically analyses
the feasible paths through the code, then uses search algorithms to
identify test vectors to execute each path. This is achieved through
a combination of test data reuse, random search, genetic algorithms
and finally model checking [32]. Unfortunately the tool places a
number of restrictions, and assumptions on the code under test,

for example the tool is only capable of analysing acyclic code and
does not allow function calls. So unfortunately the compromises
required to use the tool are significant, and would not be acceptable
in an industrial environment.

Williams [34] proposes a static analysis tool which aims to iden-
tify a test vector to exercise every path through the code under
test. The WCET can then be read off as the HWM observed during
testing. This was extended in [35] with an analysis into possible
simplifications that can be made to avoid the analysis requiring
full path coverage. These include maximising loop counts, and
assuming branches are always taken. The paper recognises that
further investigation and justification is required, but it does indi-
cate possible areas where MBTA coverage requirements could be
simplified.

Bünte et al [8] examined the effectiveness of using model check-
ing [15] to produce test suites with enough coverage to provide
reliable WCET estimates. Their research focuses on identifying
effective coverage metrics to drive a model checking test suite
generator. This was extended in [7] which combines the results pro-
duced with a genetic algorithm, which then aims to identify larger
execution times. One drawback is that the tool analyses software
that has been simplified to ensure each decision point relies on
only a single variable. This may not be appropriate to an industrial
program where large amounts of generic code are carried forward
to future programs. Also the tool’s use of model checking risks
the tool’s portability to larger, more complex functionality. These
aside, the tool shows some of the most advanced work in the field
of MBTA data generation.

Khan and Bate [16, 17] introduce the idea of incorporating multi-
criteria optimisations into a search based WCET analysis tool. The
method adopted used a number of fitness function parameters
in order to attempt to drive the worst case path, these include
advanced processor features known to cause larger WCET values,
such as cache misses, but also focused in on low level software
coverage such as loop iterations. The paper concludes that no one
fitness function provided better results across all test code items,
and that the fitness function chosen should be dependant on the
target environment. However the paper focused on a number of
processor, or software, features that are not necessarily present in
safety-critical systems and also didn’t consider coverage which is
of importance to certification.

More recently, the work of Law [19] has used coverage-based
metrics to ensure the reliability of HWM and hybrid analysis based
on Rapitime, and to better support certification. The work was
then extended in [21] to provide a more scalable approach. As this
approach has been shown to more reliably obtain the WCET the
other approaches discussed in this section, the works fall short
of justifying (with evidence) why it is more reliable and whether
further testing would provide better results.

2.3 Justifying the Reliability of Software
Most of the work on justifying the reliability of software has been
based on Reliability Growth Models (RGM) with the seminal works
in this area using Bayesian approaches [27]. The challenge with
these approaches are that they are black box in nature which means
the principal causes of a lack of reliability are not considered and
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they assume each fault is independent with respect to the previous
ones. Graydon addresses the first of these issues by producing an
argument as to how timing is approached for systems that have to
be certified [12]. This work concentrated on arguments that could
be made without necessarily reviewing the underpinning evidence,
i.e. the actual nature of the data that might be collected based on a
particular testing approach. Finally there is the previous mentioned
work on probabilistic techniques, e.g. [9]. Again this is a black box
approach and these techniques concentrate on analysing the data
rather than the integrity with which it is captured.

3 THE EXAMPLE TESTING METHOD
The purpose of this section is to introduce the search algorithm
used and then the platform on which the software operates. Details
of the software are not provided as it is industrial software from an
aircraft engine control system, however it has similar characteristics
to those in [19] and it is the same examples as used in [21]. For
reasons of space only one SUT is presented, however similar trends
were observed for the others tested from [21].

3.1 Search-Based Test Case Generation Used
The TACO framework relies on a derivative of a simulated anneal-
ing (SA) algorithm [1], outlined in Algorithm 1 for the search. The
algorithm starts from a random solution, i.e. a valid test (or input)
vector for the function under analysis (line 2). A new solution is
generated on each iteration by altering one randomly selected in-
put in the current test vector (l.7). Both operations, generation and
mutation, respect the type range constraints of the input vector.
The SUT is then executed using the new solution while collecting
information on its execution path and timing behaviour (l.8). The
new solution is accepted as the new baseline one (l.13) if there is
an improvement. This relies on the evaluation of the solution’s
fitness according to its execution against that of previous solutions.
A solution may also be pseudo-randomly accepted (l.12) to ensure
the search does not get stuck in a local minima especially in early
stages of the search. As the test progresses the pseudo-random
selection of poor solutions will decrease, as controlled by the de-
creasing temperature parameter (l.22). The search stops (l.23) after
a minimum number of iterations, if no solutions have been accepted
for a few iterations, or the temperature hits a specified lower bound.
Additional steps (l.20), such has reheating [18], are taken to prevent
the algorithm being caught in a local minima. The key configura-
tion points for the Algorithm and related fitness function are given
in Table 1.

3.1.1 BCHLr Fitness Function. The BCHLr fitness function is a
coverage-based heuristic to evaluate the fitness of a solution against
it predecessors during the search. The fitness of a solution combines
three factors:

• Branch Coverage (BC) - Accept solutions which cover new
branches to increase path coverage through the code.

• Branch History (H) - Revert to a previous solution that
reaches unexplored paths to execute all branches through
the code.

• Maximum Loop Counts (Lr) - Accept solutions which im-
prove on the observed loop iterations count to maximise

Algorithm 1 Simulated Annealing

1 t empe ra tu r e : = INITIAL_TEMPERATURE
2 c u r r S o l : = RandomSolut ion ( )
3 currTemp := temp
4 r e j S o l s : = 0
5 do
6 −− Gen e r a t e and e v a l u a t e new s o l u t i o n
7 newSol : = Mutate ( c u r r S o l )
8 newSta t s : = C a l l F un c t i o n ( newSol )
9 newF i tne s s : = E v a l u a t e F i t n e s s ( newSta t s )
10
11 −− Acc ep t o r r e j e c t s o l u t i o n
12 i f AccSol ( newFi tness , temp , rand ( 0 . . 1 ) )
13 cu r r So l , currTemp := newSol , temp
14 r e j S o l s : = 0
15 e l se
16 r e j S o l s : = r e j S o l s + 1
17
18 −− Update s e a r c h t emp e r a t u r e
19 i f r e j S o l s > HISTORY_TEMPERATURE_SIZE :
20 t empe ra tu r e : = currTemp
21 e l se
22 temp = temp x COOLING
23 loop while not S topAlgor i thm ( )

Parameter Configuration

Temperature Initial temperature 1.0
Minimum temperature 0.0001
Temperature cooling 0.9999

History History temperature 1000
History input 10
History delay 1000

Iterations Minimum iterations N.A.
Maximum iterations 50000

Input Input change rate ±5% of Value Range

Repetition Window Size 5
Window error 5%

Table 1: Simulated annealing search parameters

the number of iterations of each loop through the code, as
proposed by Khan [17].

BranchCoverage (BC) computes the average fitness of the branches
traversed during the execution of a solution. A branch fitness is
the ratio between the number of unexplored edges out of a branch
over the number of edges out of the branch:

FBC (p) =
1

|Bp |
×

∑
b ∈Bp

(
|{e | e ∈ Eb ∧ ¬Cov(e)}|

|Eb |

)
(1)
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Algorithm 2 Simulated Annealing - Modifications for Branch His-
tory

1 −− Acc ep t o r r e j e c t s o l u t i o n
2 [ . . . ]
3
4 −− Save s o l u t i o n a g a i n s t r ea ched ,
5 −− un c o v e r e d b r an c h e s
6 for branch in Branches ( newSta t s . pa th ) :
7 i f Al lEdgesCovered ( branch )
8 RemoveFrom ( h i s t o r y , branch )
9 e l se i f branch not in h i s t o r y
10 h i s t o r y [ branch ] : = newSol
11
12 −− R e s e t s o l u t i o n t o r e a c h
13 −− un c o v e r e d branch
14 i f r e j S o l s > HISTORY_INPUTS_SIZE
15 branch : = PickRandom ( h i s t o r y )
16 newSol : = h i s t o r y [ branch ]
17
18 −− Update s e a r c h t emp e r a t u r e
19 [ . . . ]

Where Bp is the set of branches traversed by execution path p,
Eb denotes the set of outgoing edges from branch b, and Cov(e)
captures whether edge e was covered by p or by prior iterations of
the search.

Between two solutions, one that reaches a branch with yet un-
seen outgoing edges will be favoured over one that only covers
fully-explored branches. A given solution may further have a differ-
ent fitness based on the history of explored solutions and branches,
and it will decrease in fitness as the search progresses.

The Branch History (H) resets the search to solutions reaching
branches with unseen outgoing edges. As each branch executed
through a solution is analysed, the history keeps track of the solu-
tion and it is stored against that branch. If a branch has unexplored
outgoing edges, the stored solution can thus be used as a starting
point to reach unobserved outgoing edges. The history triggers
when a sufficient number of new solutions has been rejected, and a
new matching branch is chosen at random. The input vector stored
against this branch is then adopted as the current solution. This
is designed to attempt to lift the algorithm from poor solutions
and focus the algorithm on the area around branches that have
only been partially executed. Algorithm 2 outlines the changes to
the simulated annealing algorithm, presented in Algorithm 1, to
account for the history.

Maximum Loop Counts (Lr) calculates the average fitness of the
loops traversed by a solution as the ratio between the number of
iterations across all loops on the path and the maximum number of
iterations previously encountered. No prior knowledge is assumed
on the maximum iterations of a loop, and it is solely based on the
maximum observed count. Like for BC, the fitness of the same
solution may thus vary during the search. The algorithm is based

on previous work by Khan [17]:

FLr (p) =

∑
lo∈Loops(p)

(CountIterations(lo,p))

MaxIterations
(2)

Where Loops(p) captures the set of loops covered by execu-
tion path p,CountIterations(lo,p) denotes the number of iterations
through loop lo on execution path p, and MaxIterations records
the maximum number of iterations encountered in a path during
the search (initialised to 1). All iterations through lo from succes-
sive executions of the loop, as an example if lo is nested in another
loop, count towards the same total; CountIterations(lo,p) does not
distinguish between different contexts for loop lo.

The BCHLr heuristic combines the two fitness functions BC and
Lr to produce a fitness function that begins by trying to identify
unseen blocks, but evolves as the search progresses to favour longer
paths through higher loop counts. The two metrics are combined
using a weighted sum, with weightsWLr andWBC respectively for
Lr and BC:

FitnessBCHLr (p) =WLr × FLr (p) +WBC × FBC (p) (3)

As the test progresses, and the branch coverage obtained in-
creases, then the loop fitness Lr weighting (WLr ) increases (and
WBC accordingly decreases). This change in weights alters the focus
of the fitness function as the analysis progresses from discovering
new paths to longer ones.

3.1.2 ET Fitness Function. The ET heuristic attempts to maximise
the observed execution time during the search. As each new solution
is executed, the execution time of the analysed item is collected
as part of the execution statistics, newStats in Algorithm 1. This
execution time is compared to that of the current solution, the last
accepted solution, such that any increase in the current execution
time will result in the acceptance of the new solution. Only strict
improvements are considered; an identical execution time does not
guarantee the new solution is accepted.

FitnessET =
ET (newSol) − ET (currSol) − 1

ET (Time)
(4)

Where ET (S) is the execution time of solution S explored by the
simulated annealing outlined in Algorithm 1.

3.2 Platform Configuration Used
In [19], software tasks were used from a Rolls-Royce aircraft engine
controller running on a deterministic processor. In this paper the
same search algorithm and fitness function is used, however this
time a Raspberry PI 3B+ is used as the processor platform as the
availability of the deterministic processor was limited. The SUT
executes non-preemptively on a single core. Steps are not executing
user-level tasks. The Raspberry PI 3B+ have been configured using
Linux in such a way that measurement noise is reduced. This is
preferred over versions of Linux with the real-time preemptive
patches as trials showed the measurement noise was reduced. It
is noted Linux has been used over real-time versions of Linux by
others [2]. Our detailed assessments did not draw a definitive solu-
tion, however our intuition is the main difference of the real-time
versions over the conventional versions is that fully-preemptive
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kernels increase the number of possible preemptions, and hence in-
crease the likelihood that the executing user task is preempted. For
any form of WCET analysis, including that in this paper, executing
atomically (i.e. without preemption) is a fundamental assumption
[33].

An illustration of a typical execution profile from a run is shown
in Figure 1. The figure illustrates that: the profile is multi-modal
in nature, i.e. there are a number of significant distinct peaks; and
the range of execution times is approximately the same as the
minimum execution time, i.e. the HWM is approximately double
the Low WaterMark.

Figure 1: Density Plot Illustrating a Typical Execution Time
Profile

4 ENSURING THE RELIABILITY OF TIMING
MEASUREMENTS

In this paper, a timing measurement is considered reliable if the
same test vector is applied to the SUT a number of times then
the variability is bounded and acceptable. Bounding the variability
means that subsequent analysis can compensate for it as well as the
impact of confounding factors are understood. Confounding factors
are those that make the comparison of groups difficult. In WCET
analysis terms this means if we say test vector X leads to a longer
execution time than test vector Y, then there is no other significant
factor (e.g. another software task contending for a shared resource
that the SUT is accessing) than the test vector that would lead to
the hypothesis being refuted.

The usual confounding factors for timing measures are uncon-
trolled variables which can be the state of the SUT or the state
of the processor. It is noted here that timing measurements are
normally performed with the cache flushed so this should not be
factor, however the methods presented would include the effects of
imperfect cache flushing. The approach advocated in this paper is
not an unusual one. Each iteration is repeatedly executed a number
of times and the variance in the execution time studied. It is noted
that across the repeated executions a check is made that the same
path is taken. This was repeated 100 times with each of these trials
being for a different path.

Figure 2 presents an example of one set of results represented
as a density plot. The y-axis is the frequency and the x-axis the
standard deviation, σi , of ti where ti is the set of execution times
for iteration i . This clearly shows a variance in the approximate
range of 48,000 to 52,000 which is a range of less than 10%. Next
a statistical analysis was performed across all 100 trials. Figure 3
presents another density plot, however this time across the set of 100
trials where the x-axis is the Coefficient of Variation. This figures
shows that the vast majority of trials have a standard deviation of
less than 5% with respect to their mean. It does show a very small
number of trials are higher.

Figure 2: Measurement Noise for an Individual Trial

Figure 3: Measurement Noise Across 100 Trials

In summary, the trials presented in this section show that both
the execution path and execution time are classed as repeatable. In
the case of the execution time, the variance is typically less than
5%. Based on previous experience, 5% was considered an acceptable
level.
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5 ESTABLISHING THAT THE CURRENT
TESTING METHOD IS UNLIKELY TO
DETERMINE NEW INFORMATION

The aim of this paper is not to claim the testing method presented
is the best approach, instead the aims are to show confidence in the
approach and convergence. Confidence is based on the coverage
across significant factors which are based on those highlighted
in section 3.1. This is considered in section 5.2. This section will
consider convergence which is whether the testing method is likely
to determine further significant information.

A simple option is just to consider the maximum execution times
(or any other measurement) and whether an increased (significant)
value has been found in recent history. There are three key issues
with this approach. Firstly the maximum value might not be chang-
ing but the general distribution of values may be. Secondly a value
such as execution time is only one indicator of whether further
information is being learned. For example in Law [19] other param-
eters were used in the fitness function of the search algorithm as
they helped guide the search more reliably. The other parameters,
e.g. block coverage and loop counts, are also significant factors
affecting the execution times of the SUT. Therefore the distribution
of these factors is important. Finally semantic understanding of the
significant factors may suggest that more significant values for the
execution times may be found, e.g. a single iteration hasn’t max-
imised all the loops at the same time which raises the possibility
a single test vector could do this. Each of these three issues are
considered in turn in the following sub-sections.

5.1 Convergence of WCET
There are two stages to judging whether convergence has occurred.
The first is to look at the data and make a subjective assessment of
whether the results are changing. The second stage uses statistical
analysis techniques to provide a more quantitative assessment of
convergence. These are explored in the following sub-sections.

5.1.1 Would the Search Algorithm Performing More Iterations Im-
prove the Results? The first step in the examination of the data is
whether the execution time of the SUT is changing. This can be in
two dimensions, between iterations and runs. Throughout section
5.1, the experimental approach taken is to randomly take X% of the
data (either iterations or runs) and compare it with a different X%
of the data. To be specific, if X is runs, then the number of itera-
tions will be fixed so that the impact of a single variable changing
(i.e. runs is understood). The process was then repeated with the
number of iterations varied and the number of runs fixed. Each
trial was repeated 20 times for each value of X.

Examining the number of iterations used provides an argument
that running the same test for longer does not have an effect. Figure
4 presents how the average HWM changes (y-axis) over a number
of iterations (x-axis), where each iteration is for 100 runs. In this
case, after 45,000 iterations the rate of change in the average HWM
is insignificant.

Testing the number of runs determines the effect of different
starting conditions on the results of the testing method and whether
these effects have converged. More specifically if multiple runs are
performed with each run having a different starting position, then

how do the results change and when do those changes become
less significant. Figure 5 presents how the average HWM changes
(y-axis) over a number of runs (x-axis), where each run has 10,000
iterations. The results clearly show that as the number of runs
increases the average HWM becomes less variable. After 25 runs
the average HWM starts to converge, and achieves a consistent
value. However, it is also worth noting that all the runs are within
5% which is within the previously established level of measurement
noise.

Overall, the results suggest that the rate of change in observa-
tions above 50,000 iterations is slow enough that resources would
be better spent performing additional runs of the algorithm. These
results also suggest that at 10,000 iterations, 25 runs are sufficient,
although even at 10 runs it is possible to be within the acceptable
5% error bound. However, using a smaller number of iterations or
runs may cause a mis-assessment of the confidence of the result,
especially when evaluating a low-probability such as exceeding the
observed HWM. Hence the rest of section 5.1 focuses on performing
a more detailed analysis.

Figure 4: HWM across iterations

5.1.2 Statistical Assessment of Convergence. There are two ap-
proaches to examining the convergence: whether the distributions
are similar, and how different the distributions are. To assess similar-
ity the Kolmogorov-Smirnov (KS) test is an often applied approach
as it does not make assumptions about the nature of the data [25].
A Goodness of Fit (GoF), also referred to as the p-value, of 0.05 is
judged as the two samples are drawn from the same distribution.
The Earth Movers Distance (EMD) test is often used to assess dif-
ferences. Therefore in this paper both of these will be used. For the
EMD metric, there is no accepted definition of significance thresh-
old. Instead a judgement is made when the distance is not changing
as the size of the initial training set increases.

Given appropriate tests of similarity and differences, the ex-
perimental approach is to perform cross-fold validation, i.e. for
a number of times compare different percentages of an original
test set with a revised test set with more results. It is noted the
revised test set does not include results from the original test set.
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Figure 5: HWM across iterations

For example, the first 10% of the available iterations are compared
with different percentages of iterations within a run.

Figures 6 and 7 show the results for the EMD’s test and the p-
value from the ks-test respectively. The Figures clearly show that
both of these metrics stabilise, i.e. do not change by as much, after
about 50% of the runs. However, Figure 7 shows that as the number
of runs increases, we increase the probability that the experiments
are determined to be drawn from the same distribution. The figures
show with less data the lack of convergence is more. Even with
50% of the data, there is a significant probability that the KS-test
will state that the results are drawn from different distributions and
thus the experiment has not yet converged. Taken in conjunction
with Figure 6 showing that the distributions of results become
more similar the more data is used, this affect is most likely due
to extreme results being more likely to be observed the more data
is used and causing the KS-test to determine the distributions are
different.

Figure 6: EMD for HWM

Figure 7: GoF for HWM

In summary, this section has shown conventional methods sug-
gest convergence of WCET has not been achieved despite a sig-
nificant amount of testing. Therefore, the next section explores
whether other more detailed metrics confirm or refute this.

5.2 Convergence of the Significant Factors
In this section, a similar approach to section 5.1 is taken of ex-
amining similarities and differences as the number of iterations
changes with a fixed number of runs and then a changing number
of runs with a fixed number of iterations. The EMD metric is used
on the significant factors instead of the p-value from the ks-test
as the p-value tended to be zero. The only exception is the HWM
as shown in Figure 7. A zero value indicates that the distributions
are different, indicating that convergence has not occurred. An
alternative reason though is the ks-test is known to be mis-leading
when a lot of data is used [20].

Figures are shown for the significant contributing factors: exe-
cution times (in Figure 8), path length (in Figure 9), loop bounds (in
Figure 10), and iPoints covered (in Figure 11). Loop bounds is the
number of times each loop in the code is executed in an iteration.
Path length is the number of iPoints covered in an iteration. An
iPoint is an instrumentation point placed at the start of each block
in the code in order to record the blocks executed and the times
at which each block’s execution is started. iPoints is the number
of different iPoints covered in an iteration. As discussed in section
2.1, other significant factors, e.g. number of cache misses, would
be difficult to measure without being obtrusive and are arguably
subsumed in the measures already made, e.g. the number of instruc-
tion cache misses is affected by the path taken which is related to
the path length.

It should be noted that the EMD metric is not comparable across
different graphs, due to the underlying statistics being incomparable
(for example, loop counts and execution times use different units
and thus cannot be compared directly). However, it is possible to
compare the trends. In this case, each of Figures 8-10 show a degree
of convergence, but still exhibit some variability. This is expected as
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BCHLr is a search based algorithm which does not explore the full
state-space, and so complete convergence is statistically unlikely.
The similarity in patterns suggest that the impact of using more
data is similar for each of the significant factors.

Figure 8: EMD for Execution Times

Figure 9: EMD for Path Lengths

Given that the set of measurements seem to have converged, it
is now valid to consider the other contributions of the paper.

5.3 Semantic Examination of the Results
By casting the hypothesis “The current set of iterations causes
the worst-case execution scenario” and trying to refute it, it is
possible to argue for or against additional testing. In this section, an
approach for trying to refute this hypothesis is presented. The basic
approach is to consider the significant factors and consider which
of these have been maximised in the same iteration. For example, if
the loops in the SUT have maximum observed bounds of L1, L2, ··,
LN however not in the same iteration. It is noted previous works,

Figure 10: EMD for a Loop Count

Figure 11: EMD for iPoints

i.e. [3, 4], would allow the maximal loop bounds to be determined
given sufficient measurements of the right type. The work in this
paper complements this as it helps identify when the current testing
approach is unlike to generate new information, i.e. measurements
of the right type.

The approach taken in this paper is to consider whether, within
a single iteration across all runs of a testing approach all the sig-
nificant factors are maximised. The significant factors established
earlier in section 5.2 are used. That is, loop bounds, path length,
and number of iPoints. However, this presented some interesting
results: while Path Length was strongly correlated with execution
time, Loop Bounds and Maximisation of iPoints were not, despite
many observations of these factors being maximised. Further, while
these factors were maximised individually with a relatively high
frequency, as shown in Figure 12, there were very few observations
of these factors being maximised simultaneously. Inspection of the
SUT confirmed that this was due to the exact paths that maximised
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these factors being exceedingly rare within the space containing
all paths. This caused the BCHLr algorithm to find these paths and
then promptly explore similar paths which did not maximise these
properties, which is expected behaviour.

Figure 12: Histogram for iPoints and Path Length Max-
imised

While the fact that the BCHLr does not conduct extensive test-
ing on paths which maximise the significant factors might cause
concern, it should be noted that this is entirely within expectations
as BCHLr attempts to maximise coverage rather than execution
time. However, such testing should be reserved for factors which do
indeed maximise execution time, and of the three factors selected
for analysis, only path length correlates strongly with execution
time. This can be seen in Figure 13, which shows a clear correlation
between Path Length and Execution Time - although some variabil-
ity is observed, likely due to uncontrolled factors on the Raspberry
Pi 3B+ platform. By contrast, while Loop Iterations does not show
a high degree of correlation; indeed some of the highest execution
times are achieved with some of the lowest loop iterations.

The fact that execution times do not correlate strongly with the
number of loop iterations likely comes about due to rarely taken
long paths of sequential code (i.e. error handlers) which do not
cause a high number of loop iterations. This leads us onto the next
section, which investigates how potential infeasible paths can be
determined.

6 GUIDING THE USER TOWARDS
INFEASIBLE PATHS

Section 4 provides techniques to decide whether the test data is
suitable for hybrid analysis. This section looks at how this data can
be used to improve the results of hybrid analysis. A key issue with
the results of hybrid analysis is the potential pessimism caused
by infeasible paths [14]. An infeasible path is defined as a path
containing groups of basic blocks that cannot be executed after
another group of basic blocks has executed. Previous works to de-
termine infeasible paths by static analysis, e.g. [14] place significant
restrictions on developers such as the use of bespoke compilers.
The two conditions for infeasible paths are as follows:

Figure 13: Scatter Plot for the Significant Factors

(1) Two basic blocks never being executed in the same iteration;
or

(2) All loop bounds not being maximised in the same iteration.
Algorithm 3 presents a simple example where basic block B

would not be executed after basic block A. Algorithm 4 presents a
more complex example. The reason the example is more complex
is if either X or Y is altered during the execution of basic block A,
then both basic block A and B would be executed. Analysis cannot
also just rely on inspecting whether basic block A manipulated
variables X or Y as, for example, the the code in Algorithm 4 could
be preempted and another function could alter the value of X and
Y .

Algorithm 3 Simple Example of an Infeasible Path

if X == Y then
basic block A

else
basic block B

Algorithm 4 More Complex Example of an Infeasible Path

if X == Y then
basic block A

if X != Y then
basic block B

As with the detection of outliers, testing and measurement can
provide no guarantee of anything. Therefore the approach is again
the automatic identification of infeasible paths but providing the
human guidance of how to validate the identification. The identifi-
cation process is described in Algorithm 5, where NEI is the set of
iPoints not executed in every iteration.

The basis for the identification is to identify sets of pairs of
iPoints that are never executed during the same iteration within
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Algorithm 5 Identification of Infeasible Paths

Determine the set NEI
for each iPoint (i) in NEI
for all other iPoints (j) in NEI
Check if i and j are ever executed in the same iteration
If not then store pair of i , j in set NT

Organise iPoints in set NT into contiguous ranges
Determine frequencies of iPoints in NT
Determine execution reduction allowing for NT

an individual run. That is, within a run it might be identified
that the following set of pairs are not executed in the iteration
- (iPointi , iPointj ), (iPointm, iPointn ). For the example, within an
individual run iPointi and iPointj are never executed in the same
iteration. These are referred to as an infeasible iPoint pair. The same
is true for iPointm and iPointn . Two figures are presented. Figure 14
shows many infeasible iPoint pairs had not been eliminated (y-axis)
after a given number of runs (x-axis). Only 29 runs are presented as
at that was sufficient runs to show there were no infeasible iPoint
pairs in the SUT. This does not means the piece of software defi-
nitely has no infeasible paths as the testing failed to find a single
test vector that resulted in all the loop bounds being maximised.

Figure 15 takes the results for the 29 runs and presents a his-
togram of how many infeasible iPoint pairs remain for each indi-
vidual run. The results show a wide range of values but also that
the best a single run does in terms of finding infeasible iPoint pairs
is 200 remaining. The overall results strongly suggest many runs
and iterations are needed to determine that the software does not
have any infeasible paths.

Figure 14: Interesting iPoints Remaining After Each Run

7 CONCLUSIONS
This paper sought to demonstrate a method which identifies when
testing is not yielding new information and apply this to a com-
plex platform, the Raspberry Pi 3B+. A variety of methods were
examined to achieve this. It was shown that a number of metrics

Figure 15: Histogram for Interesting iPoints Remaining Af-
ter Each Run

which are commonly assumed to be correlated to the execution
time of a program were not guaranteed to be, such as loop itera-
tions. However, other metrics, such as path length, were shown to
be correlated with execution time, albeit with some variability due
to the complex nature of the platform used.

The BCHLr testing algorithm was examined in depth using this
method, and this paper found that BCHLr does not reliably find the
WCET of the SUT on the Raspberry Pi 3B+ platform. (It is noted
trials with the other fitness functions used in [19] showed BCHLr
was still significantly more reliable than them, however for reasons
of space they are not included in this paper.) This is evidenced
by the fact that the HWM of BCHLr does not reliably converge
over runs using 50,000 iterations, primarily due to complex nature
of the software (which is designed with real-time applications in
mind) and the hardware platform (which is not a traditional real-
time platform). However, this is somewhat expected as BCHLr
does not seek to maximise execution time. The fact that it aims to
maximise coverage means it should not repeatedly test the longest
path. Therefore BCHLr is judged as successful. This result points to
using BCHLr to identify candidates for the path yielding the longest
execution and then using another algorithm to investigate these
further. Future work can explore this idea, and in general how to
change the testing approach once further testing is determined to
not yield additional information. In Rolls-Royce, RapiTime is used
so the soundness of the WCET can be argued in certification [19].

Finally, this paper examined how these results may be used in
hybrid-analysis, and methods to highlight potential infeasible paths
which otherwise could cause pessimism in hybrid-analysis methods.
This approach allows a subset of the program to be presented to
an engineer to determine if the potential infeasible paths are truly
infeasible, rather than having to examine the entire SUT.
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