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ABSTRACT
With the increasing complexity of real-time systems, developers
need advanced tools for detailed analysis. Existing tools usually
come with a high configuration effort which prevents their usage or
leads to configuration errors. Further problems are contributed by
analysis techniques that may introduce software overhead, which
changes the system’s behavior. Another major issue is, that modern
real-time systems make use of purchasable software components,
so-called Intellectual Property (IP) blocks. Since not all information
is accessible on these IP blocks, they can lead to the development of
opaque real-time systems, which are then even harder to analyze.
With NITRO we want to present a new methodology to tackle these
problems. It enables developers to analyze hard real-time systems
without requiring detailed knowledge of the system. NITRO is ca-
pable of detecting and monitoring the complete task set of a hard
real-time operating system, without error-prone user configuration.
Designers neither need to understand how the operating system is
implemented, nor how to configure a tool. Moreover, NITRO works
completely non-intrusive and is therefore superior to instrumenta-
tion based analysis techniques. We also show that non-intrusive
monitoring does not require expensive tracing hardware.

CCS CONCEPTS
• Information systems → Data stream mining; • Software
and its engineering→ Dynamic analysis; Embedded software;
Real-time systems software; Software maintenance tools; • Com-
puter systems organization→Real-time operating systems;
Real-time system architecture.
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Figure 1: Overview of NITRO and the complete work-flow.

1 INTRODUCTION
Functional safety in the automotive domain is indispensable for
some components like braking systems and therefore has to be ful-
filled. Besides QM (Quality Management), a new classification was
introduced in the ISO26262 [16] standard: the Automotive Safety
Integrity Level (ASIL). It ranges from ASIL A as its lowest safety
class to ASIL D with the highest safety requirements. The ASIL
rating can be applied to a wide field within the automotive develop-
ment, but we focus only on hard real-time operating systems (RTOS)
with preemptive scheduling. One part of the functional safety as-
sessment within an RTOS relies on the timing constraints of the
running task set. For a functional analysis assisting the functional
safety assessment, the important timing information of a task is
the period p, worst-case execution time (WCET) c+, and the jitter j
as shown in Fig. 2.
One further parameter is the task’sworst-case response time (WCRT)
r+, which is the complete duration between task release and com-
pletion, including periods where the task was preempted. We define
the period p, jitter j, WCET c+, and WCRT r+ as the task statistics.
Obtaining the task statistics is called monitoring and comes with
twomain issues. The first andmost critical issue is the intrusiveness.
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Figure 2: Commonly used task model and its parameters.
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Usually, the task statistics are measured by instrumentation. For
example, the instrumented RTOS hits different watchpoints imple-
mented in software which are then used together with a timestamp
to calculate the statistics. The downside of software instrumenta-
tion is that the system’s behavior is altered by the instrumentation
code, also known as the probe effect [11]. The second issue is the
lack of a standardized monitoring interface. If every RTOS had the
same monitoring interface, which can be used to retrieve the task
statistics, the solution would be easy. However, this is not the case.
Hence, every RTOS needs tailored software to enable monitoring. A
general solution to solve this problem does not exist and therefore
leads to errors made by the developers, who want to verify their
task set.
Many modern System on Chip (SoC) devices come with a feature
called hardware tracing. We can utilize hardware tracing along
with trace data analysis to solve both problems. By tracing an SoC
like the Infineon AURIX, a large number of trace messages can be
acquired. We call these trace messages the trace data. Trace data
contains information about the execution history of the SoC which
includes for example executed instructions, jumps, calls, data op-
erations and many more. Even though hardware tracing is very
powerful to observe a system, it can be difficult to analyze due to
a large number of trace messages. Because many trace messages
are generated, the device-internal memory available for hardware
tracing somehow limits the duration that can be traced. Device ex-
ternal tracing hardware enables longer tracing durations but is very
expensive. Therefore, we want to avoid the use of such hardware,
since not every developer has access to it.
With NITRO we want to show how trace data can be used to detect
andmonitor the running task set of an RTOS. Also, themethodology
we propose works RTOS-independent and needs no error-prone
user configuration. Moreover, with the RTOS independence we do
not need a special interface for monitoring and hence enable it also
in the post-development phase where not all information might be
available. Especially when IP components are used for the devel-
opment of a real-time system, necessary information may not be
given to properly observe and validate the system. NITRO greatly
improves the handling of such systems for developers. Other use
cases for NITRO is the reverse engineering and debugging of legacy
or unknown systems.
The general idea behind NITRO is that by nature every RTOS al-
ready has variables that can be used for the task activity analysis.
An RTOS has to keep record of the currently running task and this
has to be stored somewhere within the RTOS. We call this variable
Context Switch Descriptor (CSD) and use it to distinguish between
tasks and other RTOS related code to identify the task set. After
the identification of the task set, the CSD is also used for the moni-
toring. Because we do not instrument the RTOS on our own and
use hardware tracing to retrieve the needed information, NITRO is
working completely non-intrusive. The work-flow of NITRO can
be seen in Fig. 1.
To conclude our new methodology, we developed a proof of con-
cept of NITRO and executed experiments based on ErikaOS [9, 10],
which is OSEK/VDX compliant [22], FreeRTOS [1] and an AU-
TOSAR [4] implementation from ARCCORE (now Vector Infor-
matik).

2 RELATEDWORK
As far as we are aware, little research has been done on the topic
of task monitoring within hard real-time systems as explained in
this section. However, we could not find much research done on
automatically detecting the tasks to enable ease of use, except the
proposed approach by Iegorov et al. [13].
A commonly used approach today is the instrumentation of the
RTOS or its tasks. An example of software instrumentation can
be found in [6]. The advantage for the developers is the simplicity
that comes along with software instrumentation. The downside is
the probe effect [11] which may alter the system behavior while
monitoring and therefore can lead to false results. A much more
sophisticated example of code instrumentation is Feathertrace by
Brandenburg et al. [5]. Feathertrace is very lightweight and has
almost no impact on the timing behavior of the observed system.
Similar research compared to ours was done by Rufino et al. [24].
Their approach, called NORTH, focuses on runtime verification and
observation of real-time systems. They advance the state-of-the-art
of runtime verification by using temporal logic along with an FPGA
for a completely non-intrusive device observation.
Further research on real-time monitoring was done by Decker et al.
[7, 8]. The authors developed a tool, called RETOM, which utilizes
TeSSLa, proposed by Leucker et al. [17]. The stream processing
defined in TeSSLa is processed by an FPGA, which also provides
sufficient processing power to enable an online analysis.
Both approaches are powerful in terms of monitoring and runtime
verification. They have in common with NITRO, that they are non-
intrusive. The downside is that they need expensive hardware as
well as a complex configuration. NITRO has automatic detection
of system information which is needed for monitoring while only
utilizing cost-effective on-chip hardware for detection and moni-
toring.
As mentioned previously, a novel task mining approach was pro-
posed by Iegorov et al. in [13]. They use system traces consisting
of timestamps together with task identifiers to distinguish between
periodic and aperiodic tasks appearing in the system under test.
If a task is considered to be periodic, its response time and period
are calculated. They developed a tool named PeTaMi and used it
along with two real-world example traces to verify their approach.
The downside is, that the task identifiers are needed beforehand.
However, this approach could be used along with NITRO to further
lower the needed bandwidth while monitoring as explained later
in section 5.
For OSEK compliant operating systems, a debugging standard called
OSEK Run Time Interface (ORTI) [23] was developed to enable de-
bugging and monitoring. The OSEK shortcomings are the missing
support of multi-core, the needed user interaction and the limited
support by OS vendors. ORTI was used as the starting point for
ARTI [3], which shall address AUTOSAR based RTOSes on multi-
core devices.
In comparison to the above work, the advantage of NITRO is, that
it is generic and not limited to one RTOS standard.
Other work on automatic and non-intrusive real-time system anal-
ysis was done by Li et al. [18, 19]. It shows the possibilities of
hardware tracing based analysis.
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Figure 3: Typical setup for hardware tracingwith the tracing
unit attached to the memories and Processing Elements (PE).

3 HARDWARE TRACING
Before we explain NITRO in detail, we give a brief overview of
the hardware tracing facilities of the Infineon AURIX and their
utilization.
Many modern System-On-Chip (SoC) devices support hardware
tracing. With hardware tracing it is possible to retrieve detailed
information of the current state of an SoC and hence what the SoC
is executing over time. The data we collect by tracing contains, for
example, the current address of the Instruction Pointer (IP), address
and data of memory accesses, taken branches, called functions, bus
operations and many more. We call the collected data of the SoC
the trace data. A typical setup for hardware tracing is depicted in
Fig. 3.
Because modern SoCs not only provide hardware tracing but also
operate at high speed, the amount of generated trace data per
second by these devices is huge and so is the needed bandwidth
of the tracing interface that is used to retrieve the trace data. This
bandwidth can easily exceed several hundreds of megabytes per
second which may be strongly limited by the used hardware and
therefore can incur several issues. At first, due to the huge amount
of data, it can hardly be used by the developer itself and hence
has to be processed or at least pre-processed by a computer. If the
amount of data is too high, even a high-end desktop computer can
come into trouble while processing. As a second issue, the tracing
interface itself may cause problems because its bandwidth is limited
and hence not all trace data can be retrieved in real-time. The device
has to be halted or we lose trace data (we call this loss a gap in the
trace data), neither is desired.
There are two solutions we can take to not halt the system or lose
trace data:

• increase the available tracing interface bandwidth
• lower the needed bandwidth

The first solution is easy to apply but is also expensive and may
not be affordable for every developer because special debugging
hardware is needed. This special hardware provides a high-speed
interface to the device like the Xilinx Aurora Gigabit Trace [26]
along with a huge external memory as trace data storage. Even
though every tracing capable SoC comes with an internal buffer
for trace data, this external memory is multiple times larger than
the internal one. This solution is powerful but costly.
The second solution is to lower the amount of trace data generated

and hence reduce the needed bandwidth. By lowering the needed
bandwidth, we can make reasonable use of the SoC’s internal trace
data buffer. Since no special hardware is needed here, it is afford-
able for most developers but comes with limitations in terms of
observability. However, we want to support a broad community
of engineers and thus use the latter solution and show that our
algorithm is applicable even with these limitations.
To reduce the amount of trace data being generated, we configure
the tracing unit of the SoC to only record trace data that is needed
by NITRO. Depending on the tracing unit that is used inside of the
SoC, we can, for example, set different filters, triggers, and observa-
tion points as can be seen in the next subsection.
The advantage of hardware tracing is, that it is completely non-
intrusive and hence does not alter the behavior of the system under
test. NITRO only utilizes the non-intrusive hardware tracing inter-
face and runs completely off-chip on a local machine.

Since our proof-of-concept is implemented for an Infineon AURIX
[14], we want to give a brief introduction of the built-in tracing unit
calledMulti-Core Debugging Solution (MCDS). Since the AURIX is a
multi-core SoC, the MCDS can observe different cores at the same
time. However, we used only one core of the AURIX for our tests
as can be seen in section 5. This introduction will cover the parts
we utilize for NITRO. For more detailed information on the MCDS
see [25]. It should be possible with only little effort to implement
NITRO along with other tracing interfaces like ARM CoreSight [2]
or Nexus [12].

3.1 Program-Trace
The Program Trace Unit (PTU) is one of the two main parts of the
MCDS. It is connected to the different cores of the SoC and hence
can observe the instructions that a specific core is executing. It
provides three different modes for the program tracing, providing
a different degree of detail. On the contrary, the more details the
selected program tracing mode provides, the more trace data is
generated and thus a higher bandwidth of the tracing interface is
needed.
The first mode is the Compact Function Trace. It only generates a
trace message if a function of a program is invoked or returns to the
calling function. This mode provides little details but also generates
only a few trace messages and hence is the most space-efficient
way of program tracing.
As the second program trace mode, the Flow Trace can be used. It
generates a trace message not only on function calls and returns but
also on program discontinuities like if-statements or loops. This
mode is a trade-off between program flow details and the memory
consumption of the trace messages. As the last mode, the Instruction
Trace is used as the opposite of the Compact Function Trace in terms
of details and space efficiency. It generates a trace message for every
instruction executed by the observed core. It provides the same
details as the Flow Trace but with more information on the timing
behavior since each trace message has its timestamp. The three
different trace modes are depicted in Tab. 1-3.
The timestamps for each trace message can be relative, absolute
or disabled. If the timestamps are disabled, the Flow Trace and
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Instruction Trace are equal. Timestamps will be covered later in
more detail.

3.2 Data-Trace
The Data Trace Unit (DTU) as the second main part of the MCDS
is used to observe the data reads and writes of a specific core. The
DTU can be set up in different ways depending on the needs and
generates a trace message each time a data operation takes place.
The DTU can generate messages at write and/or read operations
containing only the address or the address and data value in com-
bination.

3.3 Qualifiers
Each DTU and PTU comes with two qualifiers that act as a filter for
trace messages. Each qualifier consists of two addresses (address
range) and the qualifier type.
For the PTU, two main qualifier types exist: in-range-qualifier and
out-of-range-qualifier. If the type is set to in-range, the PTU will

Table 1: Example of the Compact Function Trace mode

Time Operation Source Target

0 ns IP CALL sysInterrupt tickHandler

6 ns IP CALL tickHandler schedAndDispatch

70 ns IP RET schedAndDispatch tickHandler

71 ns IP RET tickHandler sysInterrupt

Table 2: Example of the Flow Trace mode

Time Operation

MOV.AA A15, A4
LD.A A4, [A4], 0x14
LD.W D4, [A15], 0x18

9 ns CALL 0xFFFFFFB8

JNZ D4, 0xC
LD.W D2, [A4], 0x3C
EXTR.U D2, D2, 0x1, 0x1

21 ns RET

Table 3: Example of the Instruction Trace mode

Time Operation

8 ns MOV.AA A15, A4

LD.A A4, [A4], 0x14
LD.W D4, [A15], 0x18

9 ns CALL 0xFFFFFFB8

11 ns JNZ D4, 0xC

LD.W D2, [A4], 0x3C
20 ns EXTR.U D2, D2, 0x1, 0x1

21 ns RET

only generate program trace messages if the address of the executed
instruction is within the address range that is set for the qualifier.
On the contrary, if the out-of-range type is used, the PTU will only
generate program trace messages if the address of the executed
instruction is not in the address range that is set for the qualifier.
The DTU also provides the in-range and out-of-range qualifier
types. The address range that is set for the DTU qualifier is com-
pared to the memory address of the data operation observed. If for
example the in-range type is used and any data value is written
to an address within the specified address range of the qualifier,
the DTU will generate a data-trace message and vice versa for the
out-of-range qualifier type.
In addition to these qualifier types, the DTU also provides a third
type called the program-qualifier. If the type is set to program qual-
ification, the DTU only generates data-trace messages as long as
they appear within the address range specified for the PTU qualifier.
If for example the PTU in-range qualifier uses the address range for
the function rnd_func() and the qualifier type of the DTU is set
to the program qualification, the DTU will only generate data-trace
messages as long as the data operations take place within the range
of rnd_func(). If the DTU uses this program qualifier, no address
range has to be specified for the DTU qualifier since it is bound to
the PTU qualifier. These qualifiers can be used to dramatically lower
the amount of generated trace data and hence lower the needed
trace memory and bandwidth.

3.4 Triggers
The MCDS comes with a small internal memory that is used for
trace recording. Usually, if trace recording is started, all the gen-
erated trace data is stored in this small memory until it is full and
the trace recording automatically stops. In general, this is fine to
catch a snapshot of the system under test, but in some cases, we are
interested to observe the execution of a specific function or want
to see what is happening before or after a specific function. In this
case, it is cumbersome to trace again and again until we get the
desired trace data snapshot of the system.
To cope with this, the MCDS comes with certain trigger mecha-
nisms. If a trigger is used and trace recording is started, the internal
trace memory is used as a ring buffer. The generated trace data is
stored in this ring buffer while older trace data in it is overwritten.
As soon as a trigger is hit, the trace is ongoing until a certain trigger
position is reached and then the trace recording is stopped.
The trigger position is the position of the trace message in the
recorded trace data that has fired the trigger. In general, 5 trigger
positions can be used: start, 30%, 60%, 90% and 40 bytes before end.
If for example the trigger position is set to start, the trace recording
will continue after the trigger was hit until the complete ring buffer
is overwritten once. The trace message that fired the trigger is now
at the start of the recorded trace data. If the trigger position is set
to 40 bytes before end and the trigger is hit, the trace recording will
stop after 40 additional bytes of recorded trace data. The triggering
trace message is now almost at the end of the recorded trace data.
To fire a trigger, the DTU, as well as the PTU, can be used along
with a specified address range. This address range can be set up
like the address range for the qualifiers and with the same types:
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in-range and out-of-range. If for example the in-range trigger of the
PTU is set to the function rnd_func(), the trigger is fired as soon
as the Instruction Pointer (IP) of the observed core hits the address
range of rnd_func(). On the DTU the trigger is fired as soon as a
data operation takes place within the specified address range of the
trigger. The DTU trigger can also be bound to a certain data value
that is read or written. In that way, the trigger can be for example
fired if a specific data value is written to a specific memory address.

3.5 Timestamps
The last important setting of the MCDS to cover is the timestamp
setting. The timestamp settings look trivial in the first place but can
make all the difference for the trace configuration. The timestamps
generated by the MCDS can be one of two types: a tick message or
a timestamp message.
Usually, only tick messages are generated and attached to the differ-
ent trace messages generated by the MCDS. In that way, we get the
information for every trace message, how many ticks passed since
the last message arrived. These messages can be summed up for
absolute time information instead of only relative time information.
The downside here is, that even if there are no trace messages gen-
erated due to the qualifier settings, the MCDS still generates tick
messages so we do not lose any information regarding the absolute
time that has passed. Hence, if we use tick messages for the tim-
ing information, the MCDS will generate tick messages during the
complete trace recording. Even though the tick messages consist
only of a few bytes, they can consume most of the trace memory
available, which dramatically limits the overall recording time and
increases the needed bandwidth.
The timestamp messages in comparison to the tick messages con-
tain the complete absolute time and hence do not need to be gener-
ated continuously. The timestamp messages consist of more bytes
and would consume the trace memory even faster if many trace
messages are generated, therefore usually tick messages are used.
However, the advantage of the timestamps is, that we can also bind
them on the triggers used for trace recording control. We can, for
example, disable the time information and just let generate an ab-
solute timestamp if a certain value is written to a specific memory
address. This can be a good compromise between time informa-
tion and trace memory consumption as we will see later in section 5.

With these settings we can control our tracing unit (MCDS) in
a sophisticated way: we only trace what we need. This helps to dra-
matically reduce the needed internal trace memory and hence we
can trace for a much longer time. Moreover, since we lower the
bandwidth of the trace data that is generated, we can utilize the
internal trace buffer as a double buffer to get continuous traces. The
Device Access Server (DAS, [15]) interface we are using to control
and retrieve the trace data can handle almost up to 2MB/s of band-
width to the host computer. If the generated trace data is below this
bandwidth, we can fill half of the internal buffer with trace data
while the other half of the internal buffer is read and its trace data
is transferred to the host computer. If all data is transmitted, the
buffer is swapped and the other half is filled with the trace data
while the other half is again read. This can be done continuously to

A B

MCDS PC

Buffer

(a) Buffer A is filled while buffer B is emptied.

A B

MCDS PC

Buffer

(b) Buffer B is filled while buffer A is emptied.

Figure 4: The two alternating states of the trace buffer usage
for continuous tracing.

get a continuous trace without expensive tool hardware as depicted
in Fig. 4. If the bandwidth of the generated trace data exceeds the
maximum bandwidth of the DAS interface, we can either suspend
the device or suspend the tracing. The first would be intrusive and
hence we do not want to suspend the device. The second solution
will give us a trace data stream that contains gaps. Since we get a
dedicated trace message for each gap, we can also correctly handle
the trace data so we will not face any problems due to gaps. More-
over, with the settings that we will use later for the task monitoring,
we decrease the needed bandwidth down to a point where no gaps
appear.
As this section has covered the basics of hardware tracing as well
as a brief introduction to the Infineon AURIX tracing interface, the
next section will proceed with the general idea of NITRO and its
methodology.

4 METHODOLOGY
NITRO is based on the assumption that every RTOS comes with
variables that are mandatory for the RTOS to manage and maintain
the different tasks. There can be different redundant variables, e.g.
explicit ones with a number representing the active task and implicit
ones like a pointer to the control structure or the stack storage of the
active task. Any of these variables can be used for NITRO, the only
prerequisite is the biunique relationship with the active task. As
mentioned before, we call the detected variable the Context Switch
Descriptor (CSD).
To find a CSD, NITRO executes two phases. The first phase performs
one long trace (up to several seconds) of the system to get a list
of all software functions (SWF) that are executed. This phase is
called the probing phase and it also builds the Dynamic Call Graph
(DCG). With the DCG, certain SWFs are selected that could be tasks.
The second phase (CSD phase) is then to identify a valid CSD by
performing multiple short traces (in the range of milliseconds). The
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Figure 6: A dynamic call graph with the functions f1 to f15
and three possible task sets (red, blue and green).

complete workflow is depicted in Fig. 5 and is explained next.

4.1 Probing Phase
To find the task set, we first construct different groups of SWFs
of which one group or a subset of a group may be the system’s
task set. We will use the DCG, built upon hardware trace data, to
construct these groups. The DCG is a directed graph describing
the relation between different SWFs. It is used to determine the
functions invoked by a given function. The DCG is called dynamic
because it is built by observing the system with hardware tracing
and not by a static analysis of its executable.
To build the DCG we trace function calls and returns on the device.
Since we do not need any timing information for this, we disable
the timestamps of the tracing unit. With these settings, we achieve
a comparatively low trace data bandwidth and hence can perform
a long continuous trace without expensive tracing hardware. To
reduce the overall runtime of NITRO we have chosen a record-
ing time of five seconds since we were running numerous tests to
have sound experiments. However, this recording time can easily be
raised to minutes to ensure that all tasks are covered in the recorded
trace data of a real system (as can be seen later in section 5.2). After
the trace data has been acquired, we can build the DCG since we get
a trace message for each function call appearing on the system. The
DCG is constructed by creating a node for each function appearing
in the trace data and creating a directed edge from function f to f ′

where f invokes f ′, visible by a call instruction in the trace data.
An example of a DCG can be seen in Fig. 6.
After constructing the DCG, we use it to compose groups of SWFs
which could be the task set of the system. One group is always
constructed by grouping all functions that have no parent nodes

(red nodes in Fig. 6). This group is constructed since it might be the
case that the tasks are not directly called and hence may not appear
as called in the trace data. Further groups are composed by looking
at the direct children of each node. Since it is most likely that all
tasks are directly called by the same RTOS related function (e.g.: a
dummy function within the dispatcher), the children of each node
are considered to be the task set as long as the number of children
is above or equal to a predefined threshold. We used a threshold
of three since it is unlikely that an RTOS is used along with only
two tasks. Lowering the threshold increases the runtime of NITRO
since more groups are constructed and tested. In Fig. 6, the three
SWF groups which pass these rules are colored.
All three operating systems we have tested fulfilled these assump-
tions (see section 5), even though the scheduler and dispatcher were
also called sporadically by a task termination function.

4.2 CSD Phase
4.2.1 Collecting the Trace Data. The least minimum of function-
ality an RTOS needs is the scheduling and dispatching of tasks.
Usually, an RTOS has a system tick which runs periodically. This
system tick runs the scheduler to decide which task is executed next
or if the current task can continue its execution. After the sched-
uler made its decision, the dispatcher performs a context switch if
necessary. At a context switch, the dispatcher saves the context of
the current task to the memory and then initializes or restores the
context of the next scheduled task. The context of a task usually
consists of RTOS related metadata and hence we will most likely
find a CSD in the scheduling or dispatching function, which makes
use of the context. Since the scheduler and dispatcher have to be
executed beforehand, we are interested in the code that is executed
right before a task starts or continues execution. In consideration
that an ISR is the only way to interrupt the system, we assume
that the scheduler and dispatcher are executed (or at least started)
within an ISR. To get this particular trace data appearing before
the investigated SWF executes, we set up a memory-efficient trace
configuration as follows:
We will only trace data operations together with their timestamp.
Instead of a continuous trace, we use a trigger that is set to the
address range of the investigated SWF. The internal trace memory
is used as a circular buffer, while the trigger ensures that the trace
is stopped as soon as code within the investigated SWF is executed.
If we start the trace with these settings, we retrieve trace data that
contains all write operations right before the assumed task’s exe-
cution. The hardware tracing also provides information regarding
the start and end of ISRs. An example of a trace with these settings
can be seen in Tab. 4.
Given Tab. 4 as the recorded trace data, NITRO iterates over every
write operation from Trig CPU IP at time 0 up to ISR_START at
time −240 (this timestamp varies for different traces). While iterat-
ing, every write operation where its address is the first appearance
in the trace data (closest to the trigger), is stored. Every write oper-
ation with an address that was already observed and stored in this
single trace, is ignored. At last, we summarize the resulting write
operations of this single trace and call it a fragment of the SWF
assumed to be a task. We will trace multiple of these fragments for
each SWF of a group.
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To recapitulate this briefly, NITRO records trace data multiple times
to acquire multiple trace fragments for each SWF of each group. If
we, for example, investigate a group with a size of six and collect
three fragments for each SWF, we get 6 · 3 = 18 different trace frag-
ments by tracing the system 18 times. It is important to know that
the different groups are handled independently. The algorithm to
identify a valid CSD is only used on the trace fragments of exactly
one group as explained next.

4.2.2 Finding the CSD. As we have retrieved the trace fragments
for all SWFs of a group, NITRO uses these to identify a CSD. For
the identification, every write operation in every fragment is com-
pared to all other write operations of the other fragments. Every
address that is observed in the fragments is tested if it fulfills certain
properties to be a valid CSD:

(1) The address appears in every fragment of the investigated
SWF

(2) The data value written to this address,
(a) is the same in all fragments as long as the fragments belong

to the same SWF
(b) is uniquely assigned to one SWF and hence does not appear

in any fragment of another SWF
If an address fulfills all properties, it is a CSD candidate. The ad-
dress of each candidate is stored as well as the data values that were
written in front of each SWF. Since it might be the case that not
all SWFs of the investigated group are tasks, the number of SWFs,
where the address was found within the fragments, is stored as
the candidate’s coverage. As the last parameter, the time distance
between the candidate’s write operation and the actual SWF execu-
tion is stored. We call this the candidate’s time-value.
After all fragments of all SWFs within each group were processed,
it is most likely to retrieve multiple candidates that could be used
as the CSD, of which we have to choose one as the final CSD. This
selection is based on the coverage of the candidate. The candidate
with the highest coverage is used as a CSD since it is very unlikely
that a non-RTOS related variable with a high coverage fulfills all
CSD properties. If multiple candidates share the same highest cov-
erage, we could select any of these as the final CSD. In this case,

Table 4: Example of a trace fragment. The write operations
to identify a suitable CSD (yellow) are found between the
start and end of the fragment (cyan).

Rel. Time Data Operation Address Symbol / Label

−240 0B88 STATE ISR_START
−186 A9617FF3 W32 70000240 Timer
−160 0001BE87 W32 70000068 xTickCount
−141 700000D4 W32 700008B4 ucHeap
−116 7000020C W32 7000034C ucHeap
−115 00000001 W32 7000020C pxReadyTasksList
−83 0B08 STATE
−66 00870EA0 W32 700006D8 ucHeap
−39 70000338 W32 70000220 pxCurrentTCB
−38 0000000F W32 70000064 uxTopReadyPriority
−5 0300 STATE ISR_END
0 Trigger

we select the CSD with the lowest time-value without a specific
reason.

4.3 False-Positive Classification of Tasks
Since the classification of the tasks relies on assumptions made
upon the RTOS, there is still a chance that a group of SWFs could
be classified as a task set even though it is not a task set – a false-
positive classification. However, to classify a group of SWFs as a
task set, they have to fulfill three criteria according to phase one
and two, explained previously:

(1) All SWFs are called by the same SWF or have no parent SWF
(2) An ISR takes place before the respective SWFs are called
(3) A suitable CSD is written prior to the SWF execution

With these criteria in mind, the respective SWF of a group of SWFs
needs to be started/executed by either an ISR or within a true-
positive task of the task set.
A true-positive task most likely calls several other SWFs while
being executed. However, to fulfill the criterion of a suitable CSD,
the true-positive task has to maintain such a variable, which is not
very likely. The only rational use-case we could imagine is the use
of a state-machine within a true-positive task as shown in Listing
1.

Listing 1: State-machine within a task causing a false-
positive classification.
void t a s k ( ) {

x = n e x t _ s t a t e ( ) ;
switch ( x ) {

case 1 : func_1 ( ) ;
break ;

case 2 : func_2 ( ) ;
break ;

case 3 : func_3 ( ) ;
break ;

}
}

However, a false-positive classification of such a state-machine
comes with two further limitations:

(1) The state-machine variable x has to be written before the
switch-case statement, otherwise, the x cannot be identified
as a suitable CSD

(2) The number of SWFs used within the state-machine needs
to be equal or higher than the real task-set

Assuming that all conditions are fulfilled, we would still retrieve
two SWFs groups classified as task sets: the true-positive and false-
positive task set. If the state-machine, classified as the false-positive
task set, is executed within a true-positive task, the false-positive
task set can easily be dropped since we can identify a parent task set
executing the false-positive task set. The identified parent task set
is then classified as the true-positive task set. We prepared several
task sets fulfilling these criteria to prove that this false-positive
classification can be solved.
However, for the case that such a state-machine is implemented
aside from the RTOS in another ISR, we found no solution yet to
solve this. But since such an implementation would be somehow a
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Figure 7: The trace data from a time axis perspective and the
corresponding result of the task instances.

contradiction to the usage of an RTOS, we do not expect that this
case occurs on real systems.

5 EXPERIMENTS
We developed three different experiments to demonstrate the accu-
racy and correctness of NITRO. The first experiment is based on a
simple but highly reproducible task code to show the accuracy that
is achieved by the exploitation of RTOS mechanisms, as NITRO
does. The second experiment is similar to the first but focuses on
the task set identification on systems where complex code is used
within the tasks. This second experiment is then followed by the
third and last experiment which covers the corner case that can
cause false-positives as discussed in section 4.3.
For all experiments, we set up an automatic test environment based
on Java on the tool PC side along with FreeRTOS [1], ErikaOS [9]
and an AUTOSAR [4] based OS. All three operating systems execute
their task sets as rate monotonic scheduled and fully preemptive.

5.1 Accuracy Experiment
With the first experiment, we want to show the accuracy of the
RTOS exploitation NITRO uses. This experiment executes a num-
ber of tests with randomized task sets. These task sets are then
identified by NITRO and subsequently monitored for one minute.
The monitoring is done by non-intrusive hardware tracing and
explained next. The monitoring is then followed by the test genera-
tion and evaluation. Finally, we discuss the measurement results
and their accuracy.

5.1.1 Monitoring. To monitor the identified tasks, we trace the
writes of the CSD to determine which task is executing. The tracing
unit of the Infineon AURIX is capable of filtering the write oper-
ations and only generate data and timestamp messages when the
CSD is written. With this, we can drastically lower the bandwidth
and hence continuously monitor the task set without expensive
tracing hardware. To determine if the task starts or continues exe-
cution, we look at the function trace (program addresses of calls
and returns). With this setup, we get the necessary trace data to
calculate the task set statistics.
Between two write operations on the CSD, we can see which
task was executing for how long. The task can be identified by the
biunique value written on the CSD at the first of the two write oper-
ations. Since this information is only sufficient to calculate a task’s
utilization, we also look at the program addresses that are executed

between the two write operations, to determine whether the task
is starting or continuing. If the first address of a task is executed
between the two write operations, it is the task start. Otherwise,
the task continues execution after a preemption. The end of a task
is always the last time it was executing before a new task instance
started. An example of this measurement method can be seen in
Fig. 7, where one instance of each task can be measured.
Instead of using a program trace to identify the task’s release and
completion time, the approach of Iegorov et al. [13] could be applied
here as previously mentioned in section 2. Only the timestamped
trace of the CSD writes are then needed to monitor the task set.
Since the program trace can be disabled, the tracing bandwidth
will further decrease which enables NITRO for even slower tracing
interfaces or multi-core monitoring.
This method for measuring the task statistics is very trace-memory-
and bandwidth-efficient and hence we can use it for continuous
traces. Since we only get timestamps on CSD write operations, this
leads to some minor inaccuracy because we do not get the exact
timestamp of the task execution start and end. Also, the runtime of
RTOS related routines (scheduler, dispatcher, etc.) cannot be distin-
guished and hence is added to the task’s runtime further impairing
the measurement accuracy. With the Infineon AURIX, it is possi-
ble to trace ISR entry and exit points together with a timestamp.
This information can be used to correct the task statistics. How-
ever, since the used tracing libraries did not support this, we could
not implement this even though the on-chip tracing hardware is
supporting it.

5.1.2 Test Generation. For the task set generation, we roll a ran-
dom number of tasks n ∈ [5, 9]. Since we are using rate monotonic
scheduling, we can calculate the upper bound of the task set uti-
lization with the formula of Liu and Layland [21] to ensure that the
generated task set will be feasible:

Uub = n(21/n − 1)

With Uub as the upper bound, we roll a random task set utiliza-
tion U ∈ [max(0.5,Uub − 0.2),Uub ]. The utilization U is evenly
distributed on all tasks of the task set with u = U

n . Each task also
gets a unique and randomized period p assigned. As last, for every
task a random numberm ∈ [3, 6] of sub-functions is rolled and the
utilization u of the tasks is evenly distributed on these. The sub-
functions itself implement the utilization as a for-loop executing
NOP instructions. At a first glance, it may look insufficient to rely
only on NOP instructions for the task load, but actually, it makes no
difference in how the task load is implemented, due to the method-
ology that is used to detect different tasks. Since NITRO uses a
trigger on the start address of a task function, the code executed
within the task is never traced and processed, and therefore cannot
affect task detection at all. However, complex task code leads to
other difficulties as described later in section 5.2.
After the task set has been created, the code for its implementation
is automatically generated, compiled and flashed.
The first RTOS we have used, ErikaOS, is a feature-rich OSEK com-
pliant operating system. The tasks in ErikaOS are implemented as
normal SWFs that are triggered by an OSEK timer event. As soon
as a task is triggered, it runs once. As the second operating system,
we used an AUTOSAR OS implementation of ARCCORE, similar
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to ErikaOS. The tasks are again implemented as normal SWFs trig-
gered by a timer event. The third operating system is FreeRTOS
which is very lightweight compared to ErikaOS and AUTOSAR. It
only provides the bare minimum of operating system features and
does not implement a certain standard. The tasks in FreeRTOS are
implemented as threads, meaning that each task is an SWF with an
infinite loop. At the end of the loop, a delay function of the RTOS
is called, which invokes the scheduler and dispatcher. All three
operating systems also have a periodic system tick that runs the
scheduler and dispatcher.

5.1.3 Test Evaluation. After setting up the test environment, NI-
TRO starts its trace-based analysis to identify and monitor the
task set. To validate the measurement results, three parameters of
each measured task are compared to the parameters used for their
generation:

(1) the number of tasks n′ that were found
(2) the period p′τ of each task τ
(3) the execution time c ′τ of each task τ

The comparison of the number of tasks n′ is trivial since we just
compare them to n, which is the number of generated tasks.
As the next test criteria, with the measured period p′τ and the
generated period pτ of task τ , we can calculate the observational
error in percent of the task set Γ:

Ep =
1
|Γ |

∑
τ ∈Γ

����p′τpτ − 1
���� · 100%

The same calculation is done for the execution time cτ that can be
derived by the utilization uτ and period pτ used for the generation
of task τ and hence for the complete task set Γ:

Ec =
1
|Γ |

∑
τ ∈Γ

���� c ′τ
pτ · uτ

− 1
���� · 100%

with c ′τ as the measured average execution time of task τ .

5.1.4 Results. To have reasonable results, we generated 50 ran-
domized task sets. Therefore we executed 150 tests in total. NITRO
was able to identify all task sets correctly for every RTOS. The
average observational error of the measured execution times and
periods of each task set (Ec and Ep ) is below 5%, as can be seen in
Fig. 8a and 8b.
It is conspicuous that the observational error on the measured
execution time Ec for ErikaOS is higher than for AUTOSAR and
FreeRTOS. This is because the period of the system tick in ErikaOS
is just 0.1ms. Since the execution time of the system tick is included
in the measured execution time of a task, it has a clear impact on
the measurement if the task has a long execution time. For example,
if we have a task with an execution time of 10ms, it covers the
execution of 100 system ticks. If the execution time for one system
tick is equal to 0.005ms, the measured execution time of the task
increases to 10ms + 100 · 0.005ms = 10.5ms which results in an
observational error ep of

ep =

����10.5ms
10ms

− 1
���� · 100 % = 5 %.

If the period and execution time of the system tick is known, an
error term can be calculated to correct the measured values and
further decrease the observational error. However, since NITRO

0 0.5 1 1.5 2 2.5 3 3.5

ErikaOS

AUTOSAR

FreeRTOS

Observational Error [%]

(a) Observational errors Ec on the measured execution time of the
tested task sets.

0 0.5 1 1.5 2 2.5 3 3.5

ErikaOS

AUTOSAR

FreeRTOS

Observational Error [%]

(b) Observational errors Ep on the measured periods of the tested
task sets.

Figure 8: Observational errors resulted from our tests.

only identifies and measures the tasks, it is not possible from the
perspective of NITRO to calculate such an error term. Another prob-
lem of NITRO is the measurement impairment caused by non-RTOS
software routines that are executed within ISRs. These routines
would further decrease the accuracy of the implemented measure-
ment method. As mentioned before, this can be solved, but we were
limited by the used tracing libraries.

5.2 Complex-System Experiment
The second experiment we have developed complements the first ex-
periment by demonstrating that NITRO is also able to identify task
sets consisting of complex code rather than only nop-operations.
The code executed by the different tasks is taken from the Power-
stone Benchmark Suite [20], which implements 13 different functions
as can be seen in Tab. 5.
The task sets are generated in the same manner as described in
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section 5.1, but instead of using loops with nop-operations, we as-
signed one of the functions to each task that can be generated. Thus,
every generated task executes exactly one of the functions shown
in Tab. 5 while every function is only executed by that respective
task.
The main challenge we noticed on this test is that the probing phase
may result in an incomplete call-graph due to gaps appearing while
tracing. The gaps appear since the system now consists of way
more functions that are called. However, this problem can easily
be solved by increasing the trace duration for the probing phase or
by repeating the probing phase multiple times. By extending the
probing phase, a complete call-graph can be reconstructed even
though there may be gaps in the trace data. Due to memory effi-
ciency in the probing phase, we decided to increase the number of
traces that are performed for probing and kept the trace duration
constant at 60 s per trace.
Another issue that appeared while dealing with more complex code
was, that there is a chance where the start of an ISR cannot be
found within a fragment for the CSD identification. This is due to
a higher activity of data read and write operations caused by the
complex code. NITRO usually discards these fragments, which can
then result in an incomplete task set after a CSD was found. How-
ever, it is possible to relax the conditions here, by letting fragments
without an ISR pass to the next step, identifying the CSD. With
this relaxation, we could easily deal with this issue and all task sets
were identified properly. Anyway, this relaxation should only be
used if needed since we expect that it may cause other issues. The
conditions under which this relaxation can be done are not known
yet but we plan to investigate this in the future.
For this experiment, we executed 50 tests for each RTOS. The out-
come was that all tasks could easily be found by NITRO even with
complex code involved. We also ran tests with task sets consisting
of periodic and aperiodic tasks. Since we use triggers while tracing
for the task identification, as explained in section 4, NITRO was
also able to identify aperiodic tasks as expected.

Table 5: The different functions of the Powerstone Bench-
mark Suite [20].

Function Description

adpcm Voice Encoding
bcnt Bit Manipulation
blit Graphics Application
crc Cyclic Redundancy Check
engine Engine Controller
fir Finite Impulse Response Filtering
g3fax Fax Application
huff Huffman Encoding
jpeg JPEG Compression
pocsag Asynchronous Protocol for Pagers
qurt Quadratic Equation (Zero Search)
ucbqsort Quick Sort
v42 Modem Application

5.3 False-Positive Experiment
As already explained in section 4.3, there is a chance that the
code within a task or ISR favors the detection of false-positive
task sets. Therefore we implemented two systems that can cause
false-positives. The first system uses a state machine within a task.
The variable of the state machine is changed at the beginning of the
task – thus the state variable is a viable CSD. The second system we
have implemented consists of a task set which runs different func-
tions of the Powerstone Benchmark Suite. Along with this task set,
a non-RTOS ISR runs periodically. With each execution of this ISR,
a state-machine favoring false-positive classification is executed.
For the first test, the functions of the state-machine were identified
as the task set – which is a false-positive. As explained previously
in section 4.3, this is exactly what we expected. However, we could
solve this issue easily by adding the constraint, that the identified
task set is not maintained by a function that is part of another iden-
tified and viable task set. As we rerun the test, the state-machine
was not identified as a task set anymore.
The result of the second test, where the state-machine resides in a
non-RTOS related ISR, showed that the state-machine was detected
as the task set – being a false-positive. However, we could not find
a way to cope with this case yet but we are quite optimistic to do so
in future work. Aside from solving this issue, the question of how
probable this case is, in reality, remains unanswered as of now.

Our experiments have shown that NITRO works as expected and
can probably be used along with many other real-time operating
systems. Also, the identification and monitoring of the task set
runs off-chip and therefore is along with the hardware tracing
completely non-intrusive.

6 CONCLUSION
WithNITROwe have shown that it is possible under certain assump-
tions, to automatically identify the task set from hardware trace
data for a real-time operating system. This enables many previously
costly and complex performance measurements for developers. For
instance, the exact runtime of a function, which is executed within
a low priority task with many preemptions, can only be measured
when the task set is known. The approach was tested with a proof
of concept tool with three different real-time operating systems
and 50 task set configurations per system. The tests have shown
that NITRO applies to various operating systems and that it can
tackle the problem of a missing standard interface for RTOS moni-
toring. Further on the information retrieved by NITRO is sufficient
to monitor the task set in a non-intrusive manner without the need
for expensive tracing hardware. We also minimized user errors by
avoiding RTOS specific software instrumentation and complex tool
configurations. NITRO also enables task monitoring for real-time
operating systems, where not all information is known or given
due to IP components or legacy systems.
As of now, NITRO was only tested with single-core software config-
urations. However, we do not see a fundamental issue in applying
it for multi-core setups which are used for hard real-time systems,
due to the nature of operating systems used there.
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