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ABSTRACT

Implementing a new scheduler within a real-time operating system
is challenging. The transition from a theoretical scheduling policy
specification to a real platform implementation requires several
constraints to be taken into account. Therefore, a verification pro-
cess must support the implementation work to give it a level of
confidence and validate its correctness.

In this paper, we present such a verification approach which
is based on model-checking. It aims to identify subtle issues in
our implementation of scheduling policies within an OSEK/VDX
real-time operating system called Trampoline. As an example, the
approach is conducted on elaborated models of an implemented
G-EDF scheduler along with other OS components that contribute
to the scheduling decision. Then, the verification is carried out
by checking a set of relevant requirements which are identified
based on the expected behavior of the scheduler as specified in the
literature. This approach demonstrated its feasibility since potential
issues are detected in our implementation.
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1 INTRODUCTION

Adopting multicore architectures for executing real-time appli-
cations has given rise to multiple research projects in order to
propose efficient scheduling policies [3]. This has motivated some
new works of implementing dynamic scheduling policies such as
EDF [11, 15, 22]. However, to adopt such policies, it is essential
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to first study the feasibility of their implementation within a real
platform and to evaluate their true performances. In this context,
our goal is to extend our RTOS Trampoline [5] so that it can support
global multiprocessor scheduling policies.

In the current design of Trampoline, the integration of new
schedulers is kernel-based. However, scheduler implementation at
the kernel level is not an easy task: it requires a complete under-
standing of the OS architecture and code. Multiple implementation
constraints which are completely abstracted in literature must be
considered and the gap between theoretical scheduling specification
and concrete RTOS considerations makes the scheduler program-
ming task complex.

This gives rise to many issues: how to ensure that the imple-
mentation of a new scheduling policy within an RTOS is correct?
How to verify that the implemented scheduler always produces the
expected behavior in accordance with the specifications given in
theory? What are the effective means to verify this correctness and
how to establish an efficient approach for this verification? In fact,
if we want theoretical results in real-time scheduling to emerge in
practice, implementations should be supported with verification
methods that can provide confidence on their functional correctness.
Manual verification cannot be an option considering the implemen-
tation complexity and constraints. A possible approach to detect
implementation errors is simulation under significant scenarios.
However, one cannot identify all possible scenarios that the system
must deal with.

In order to address this problem, we aim to use formal approaches
to formally verify the implementation of global scheduler within a
real-time operating system. To do so, we focus on verifying require-
ments of the implemented scheduler. Our study is not intended to
verify the schedulability of an application but rather to verify the
behavior of the scheduler implementation. Our approach is based
on a previously elaborated model of an implementation of G-EDF
in Trampoline [10]. This model describes carefully the control flow
of the implementation since it abstracts every instruction of the
source code into a transition in the model using the same variables
and actions of the implementation.

Contribution and outline: The work described in this article
presents a formal approach that addresses the issue of verifying
the correctness of a global scheduler implementation within the
purpose-built embedded Trampoline RTOS. The main idea is to
provide evidence that the implemented scheduler behavior matches
its specifications.

This study is the follow-up of a prior work where an implemen-
tation of G-EDF scheduler within Trampoline, that only supported
static partitioned scheduling, was proposed. This previous work
was also associated with initial ideas to verify the implementation.
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[10]. However, the verification was partial and performed for one
application which does not guarantee an exhaustive verification of
the scheduler. Our rational in this paper is to rather use the previ-
ously achieved implementation and conduct a modular verification
approach on it based on specific requirements. These requirements
are identified in accordance with the expected behavior of the im-
plementation and demonstrated to be significant for it. They are
verified using model-checking to ensure that the implementation
is compliant with the scheduler’s specifications. To do so, verifica-
tion engines are elaborated to generate all possible scenarios for
activating and executing a given task set.

The rest of this paper is organized as follows. Section 2 discusses
related works. Section 3 provides a review of the initial work of
this study. Section 4 explains the choice of requirements to be
verified for the implementation. Section 5 presents our approach
for conducting verification of these requirements and Section 6
illustrates some of its results.

2 RELATED WORKS

There have been a number of works using formal methods to verify
real-time operating systems regarding various problems. Funda-
mentally two main approaches are being used:

Theorem proving: is aformal method characterized by describing
the specification of a system in a mathematical reasoning system,
which consists of a set of axioms and a set of inference rules that can
be used to derive new theorems. In the field of OS kernel verification,
this approach has been used to verify SeL4 [19] and CertikOS [18].
Both are certified OSs using interactive theorem proving although
they don’t support real-time applications. SeL4 is a micro-kernel
that uses the theorem prover Isabelle/HOL [21]. CertikOS uses the
Coq proof assistant [14] for its certification.

The theorem proving was also used in numerous works that are
interested in studying the schedulability within a real-time operat-
ing system. The work around Prosa for instance [13] addresses the
response time analysis for global fixed priority and EDF schedulers
and provides a flexible foundation for formally proven schedula-
bility analysis based on mechanized proofs. This work does not
match with our objective since we are interested in the verification
of implementations and not in the analytical aspects of real-time
systems.

The aforementioned verification approaches require user guid-
ance and the specification of many lemmas and a large number of
commands. This demands a significant expertise in the field and a
large human investment to prove small theorems, which gets worse
in the event of proving sophisticated properties.

Model-checking: is an automated formal verification approach
that allows the exploration of all possible states that the verified
system can go through and checking desirable properties over its
state-space. Thanks to its advantages, model-checking has been
successfully applied in numerous research works related to the
field of real-time systems. Those related to scheduling have as
their objective either to verify the schedulability of a system [16],
or to build a scheduler tailored to a particular system using the
paradigm of controller synthesis [1]. For the most part, they are
based on the theory of timed models such as timed automata or
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time Petri nets, and on state space analysis methods. Another study
[24] of modeling an OSEK/VDX application and the core part on its
kernel have been proposed, it uses UPPAAL[7] to perform rigorous
timing analysis. Bodeveix et al. [8] used also model-checking to
verify some scheduler properties within BOSSA framework [4] as
well as several safety properties of the OS. This formal method
has been also applied in hardware and software verification. For
instance, Intel has been using it since 1990 to build industrial verified
systems [2, 17]. It has also reported the success of this technique to
detect programming errors that would have been escaped all the
verification tools.

Our rationale for employing formal verification is quite different
from the works presented above: given a scheduler implemented
inside an RTOS kernel, we aim at checking the correctness of its
implementation formally based on a model. By correctness, we
mean not only the absence of programming errors that are likely to
crash the OS, but also the accuracy of the scheduling operations and
decisions. It is a similar objective that can be found in [20]. In the
context of a meta scheduler for implementing real-time scheduling
algorithms on POSIX compliant RTOS, model-checking is used to
ensure that the outputs from a scheduling algorithm using the meta
scheduler framework conform to the scheduling decisions of its
native version implemented inside the kernel. This study however,
does not consider the multicore/multiprocessor constraints, and
the verification is conducted on one application. Our verification
work on the other hand, aims to verify the implementation of a
global multiprocessor scheduling policy regardless of any specific
task. It is rather in line with the work of Tigori et al [23] where the
whole platform independent source code of Trampoline is modeled
as a network of extended finite automata. By adding an application
model and doing a reachability analysis, the operating system can
be configured so that all the dead code is removed. In [6] the model
is extended with observers to verify the OSEK/VDX conformance
of the configured operating system.

3 BACKGROUND

This section provides a summary of the work previously carried
out [9, 10] to implement and model a G-EDF scheduler within
Trampoline RTOS [5].

3.1 Implementation of G-EDF

Trampoline! [5] is an open source real-time operating system that
implements the OSEK/VDX and AUTOSAR standards. It was devel-
oped in the Real-Time Systems group at LS2N in Nantes (France).
Initially, it supported partitioned scheduling in multicore. Trampo-
line’s scheduler is implemented at the kernel level. This means that
multiple components and functions of low-level are involved in
calculating the scheduling decision and they define the scheduling
perimeter. These components are detailed below (cf. Fig. 1).

Task Manager: it gathers low-level functions that are responsi-
ble for activating and terminating jobs.

Time Manager: it handles the calculation, the representation
and the comparison of absolute deadlines.

Task List Manager: it handles all the operations related to the
insertion and extraction of ready jobs into task lists on the request

http://trampoline.rts-software.org
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of Task Manager or the Scheduler. It also takes in charge of sorting
these lists.

Scheduler: it is responsible for determining the scheduling se-
quence according to G-EDF policy. It is called by Task Manager
whenever a job is activated or terminated.

Context Switch Manager: performs the context saving of the
job that is preempted and restores the context of the one that gains
the CPU following the Scheduler’s decisions.

r| Task Manager
events

Scheduler

Jabeuely 3517 dsel

Data Structures:
- ReadyList

- PendingjobList
-tpl_kern

Time Manager

I'I'

Kernel Scheduling perimeter |

Board

Support Context Switch
Package Manager

Figure 1: Interactions of G-EDF scheduler with other Tram-
poline’s components.

The scheduling decision is calculated by the Scheduler using
the informations provided by the Task List Manager and the
Time Manager

—» cal
~--p Access through

3.1.1 Some Trampoline features. In Trampoline’s G-EDF sched-
uler, an absolute deadline is computed whenever a job is activated
by adding its corresponding relative deadline to the current time.
The time in Trampoline is represented on a circular time model
with 32-bit variable and 1ps resolution. The comparison of dead-
lines is performed using the ICTOH algorithm (for Circular Timer’s
Overflow Handler) [12].

Trampoline OS allows successive activations of the same task
up to a statically fixed limit that is called the maximum activation
count. This means that the release of a new job of a task may occur
even if the previous one did not terminate. The number of jobs
activated for a task and not yet completed is called the activate
count. However, two jobs of the same task should not be executed
at the same time and the priority of execution shall be attributed
to the oldest released job. For this purpose, two types of ready job
lists are considered: 1) the ReadyList: to store the oldest released
and non-terminated ready jobs of each task that we call active jobs.
It is implemented as a min heap in which absolute deadlines of jobs
are used as keys (values of the nodes). If several jobs have the same
deadline, they are attached as a linked list to the same heap node.
2) the second type is used to store new released jobs of a task while
the previous one is not terminated. They are called pending jobs.
Each task 7; has its own list PendingJobList;. It is implemented as a
FIFO according to the task activation order and it stores its pending
job absolute deadlines.

In Trampoline, the scheduling operations always take place on
the core where the scheduling triggering event occurs. However,
rescheduling may lead to a preemption and a context switching
that have to be achieved on another core. So as to separate jobs
that are considered by the scheduler from the actual ones that are
running on processors, the tpl_kern structures are available, one
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by core. Each one contains the running, elected and need_switch
fields: - running gives the identifier of the running task, - elected
contains the identifier of the task that is selected by the Scheduler
and, - need_switch indicates if a context switching must take place.

Note that in the multi-core version of Trampoline, there is only
one instance of the OS that runs sequentially in the cores in which
the OS should be executed. Thus, the access to the kernel by a core
is sequentialized due to a global lock that prevents competition
between cores. It is important to note that the main purpose of
this paper is not to propose an implementation of G-EDF scheduler.
Thus, for more details about this implementation please refer to
[9, 10].

3.1.2 Scheduling procedure. In our implementation of G-EDF,
only basic and independent tasks are considered. Meaning that
we do not focus on tasks that can wait for events or share re-
sources. Thus, the scheduler is triggered only for job activation or
completion. The steps for making the scheduling decision within
Trampoline are summarized below:

1. When a scheduling event occurs and it is a new job activation
of a task 7;, the absolute deadline of the job is computed by the Time
Manager. If the activation count indicates that there is already an
active job for that task, the Task Manager calls the Task List Man-
ager in order to store the new activated job in the PendingJobList;
along with its absolute deadline. Otherwise, the job is stored in the
ReadyList according to its absolute deadline and the Task Manager
puts the task z; in the READY state. If the scheduling event is a termi-
nation, the PendingJobList; of the terminated task z; is checked. If
there is a pending job, it is removed from the PendingJobList; and
stored in the ReadylList according to its absolute deadline. In that
case the state of the task is changed to READY, otherwise it becomes
SUSPENDED. In the end, the Task Manager calls the Scheduler.

2. When the Scheduler is called, it selects the highest priority
jobs by consulting the ReadyList and the absolute deadlines of
jobs calculated by the Time Manager. In the implementation, the
ReadyList is sorted in an increasing absolute deadlines order. There-
fore, the Scheduler must only select the m jobs from the head of the
ReadyList to be executed on the m free processors. To do so, two
tests are iteratively performed: 1) is there a free processor while the
ReadyList is not empty? 2) does the job at the head of the ReadyList
has a higher priority than the running one? In the first case, the
job at the head of the list is extracted to be executed on the free
processor. In the second case, the running job is preempted, put
back in the ReadyList and its state is changed to READY. Then, the
higher priority task is extracted and scheduled for execution.

3. When the scheduler decides that a context switch shall take
place on a core, it updates elected and sets need_switch in the
corresponding tpl_kern. Then, the Context Switch Manager saves
the context of the task identified in running, loads the context of
the one given by elected, copies the value of elected into running
and the state of the task becomes RUNNING.



RTNS 2020, June 9-10, 2020, Paris, France

3.2 Implementation modeling

3.2.1 General modeling techniques. Our work concerns only
the implementation of the scheduler and does not focus on model-
ing the entire OS. As a result, a pre-existing OS model proposed by
Tigori and al. [23] is used as a basis for building models concerning
our implementation. The OS model is elaborated using UPPAAL
model-checker [7] which accounts for the use of it in our work.
In the models, each Trampoline’s function is abstracted by an Ex-
tended Finite Automaton (EFA) or by a function written in UPPAAL
language (a syntax similar to C language) using the following rules:

o the structure of the automaton describes the control flow of
the modeled system.

e the variables used in the model are the control variables of
the system.

e a sequence of instructions is abstracted by a single action
with a set of updates and/or guards on the set of variables.
In such a case, their execution is considered “atomic”.

e actions and conditions on variables attached to each transi-
tion are the same ones that correspond to the source code of
the system.

o the imperative code associated with each transition of the
automaton is similar to the source code of the system.

In every automaton of the OS model, a transition corresponds
either to a test or an action (an assignment or a function call). The
transition can be firable only if the test is satisfied, and as soon as
it is fired, the associated action is performed.

Tests are translated to a guard and assignments by an update
over the control variables. Function calls are handled by a synchro-
nization mechanism between the two automata. First, the caller
automaton releases the execution of the callee automaton with a
synchronization over a channel (with “!” to emit and “?” to receive)
and sets a shared variable to 0. A guard using this variable blocks
the caller while it is equal to 0. Second, the callee automaton com-
pletes its instructions and sets the shared variable to 1 to release
the caller. This ensures the sequential execution conforming to the
real execution. The function parameters are passed from the caller
automaton to the callee automaton by using shared variables.

In the model, the kernel is considered untimed. Each state, except
the initial state, of an automaton is urgent. Accordingly, from the
point of view of the other components of the system, the execution
of a sequence of kernel code is performed in zero time. In fact, taking
into account the OS execution overheads can be useful in the case of
checking whether or not the deadlines are met as in schedulability
analysis. This does not interfere with our objectives since we aim
to verify the functional aspect of the G-EDF implementation. Thus,
our model does not consider overheads and only elapses time while
tasks are being executed but not at the kernel level.

3.22 G-EDF model. Using the rules described above, the imple-
mented functions of the components involved in the scheduling
are modeled using EFAs. Due to space limits, we only present EFAs
abstracting the Scheduler and the Timer functioning.

In the model, the scheduling function tpl_schedule() is executed
whenever the EFA that models the Task Manager is synchronized
with the Scheduler’s EFA. Then, the scheduling is performed in two
loops. The first one is used to start the highest priority ready jobs
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front_proc := tpl_front_proc()

)

front_proc.absolute_deadline <
elected_proc.absolute_deadline
tpl_preempt[core_id]!

preempt[core_id] := 0
I(front_proc.absolute_dgadline <

; )
elected_proc.absolute/deadline) > preempt[core_id] == 1

tpl_start[core_id]!

start[core_id] ==
core_id_var[core_id] < N-1 READY_LIST_UPDATE(ready_list_var)

&& ready_list_var[0].key > 0

]
core_id_var[core_id] := @
core_id_var[core_id] + 1

Figure 2: part of the Scheduler automaton: Double circle rep-
resents initial location, the U inside a location denotes an
urgent location and each location describes the function ex-
ecution state. Guards are depicted in green, synchronization
in light blue and actions in dark blue.

on the free cores available. The second one is used to check if there
is a job stored in the ReadyList which has a higher priority than a
running job. A part of the scheduling function model is illustrated
in Fig 2. This part first describes the process of comparing the
deadlines of the running task (the one in the head of the ReadyList
(front_task)) and the preemption of the running task if it has lower
priority followed by the execution of the front_task.

3.2.3 Timer model: The G-EDF scheduler is based on deadlines
to perform the scheduling. Thus, it is necessary to model a mecha-
nism that allows retrieving the current time in order to calculate
the absolute deadlines. To do so, a timed automaton that models a
Timer is considered. It uses a clock variable to represent the pro-
gression of time. The automaton handles also a shared variable that
represents the time in microseconds (as in the real implementation
in Trampoline). This variable is incremented whenever the Timer
automaton is synchronized with other automata in which passing
time is needed as shown in 3. It is necessary to distinguish this
Timer which is used only in the model for time progression, from
the Time Manager which is an OS component responsible for the
calculation and comparison of absolute deadlines.

4 REQUIREMENTS SPECIFICATION

G-EDF is a work-conserving and fixed job priority policy. The prior-
ity assignment is based on the absolute deadlines of jobs. Therefore,
the implemented scheduler must ensure that at any time ¢, it is
the m jobs (at most) with the closest absolute deadlines that are
running on the m processors. It is expressed by the two following
requirements:
e at any time ¢, all the tasks that are in the RUNNING state have
smaller absolute deadlines compared to any other task in the
READY state.
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TIMER_O @

timer <=11 (s KERNEL_MODE())

&& timer ==1

MicroSecondslinc!
micro_seconds_inc_func(),
timer := 0

TIMER_1 (©)
micro_sec_date < VTI

micro_sec_date == VTI

TIMER@ END_1

Figure 3: the Timer automaton: The timer emits a call through

a synchronization on a broadcast channel MicroSecondesInc!.
IS_KERNEL_MODE() is a function used as a transition guard to
make sure that the execution is not at the kernel level since
the kernel is untimed. When it is fired, it calls a function
micro_secondes_inc_func() to increment the time variable in ps.

e a processor cannot be free while there is at least one task in
the READY state.

4.1 Taking implementation specification into
account

When moving to the actual implementation of G-EDF policy in
Trampoline, other requirements have to be taken into account. As
presented in 3.1, the scheduling decision within Trampoline in-
volves other components of the OS other than the Scheduler. There-
fore, checking the correct functioning of these components cannot
be ignored. Even if the Scheduler operates correctly according to
the requirements expressed above, the produced scheduling result
might be false if the behavior of the other components is wrong.
In our implementation, we can highlight some situations that may
occur:
situation 1: the Task Manager does not call the Scheduler after
a job activation or termination. Thus, the scheduling is not
performed.
situation 2: the Task Manager does not put a new activated job of
task 7; in the ReadyList or the PendingJobList;. In that case,
the Scheduler’s decision does not take into account this new
activated job.
situation 3: the Task Manager miscalculates the activation count
of a task. Then, the jobs can be lost during the process of
scheduling.
situation 4: the Context Switch Manager does not apply the sched-
uling decision computed by the Scheduler. In that case, the
following rescheduling will be based on false results.
In order to take into account such situations, behavioral require-
ments to analyze the proper functioning of the system components
must be expressed.

4.2 OS components requirements

Our approach consists of carrying out the verification in a modular
way by verifying separately every component of the scheduling
perimeter. It leads to clearly delimit the verification perimeter of
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each component and to better locate implementation errors. For
every component, a set of requirements is specified according to
its expected behavior. We distinguish intrinsic requirements that
depend on the G-EDF policy and could be reused for another im-
plementation of the policy in another operating system. On the
other hand, we also consider requirements that depend on how
Trampoline is designed and that must be re-adapted according to
the implementation platform.

Task Manager: ensures that the necessary functions for activa-
tions or terminations of jobs are performed correctly. The require-
ments that must be verified are:

- when a job of a task i is activated:

« if the activation count of task i is zero, the new activated job
shall be put in the ReadyList.

« if the activation count of task i is zero, the task’s state shall
become READY_AND_NEW.

« if the activation count of task i is greater than 0 and less than
its maximum activation count, the new activated job shall be
put in the PendingJobList;.

« if the activation count of task i is equal to its maximum acti-
vation count, the new activated job shall be ignored.

« if the activation count of task i is less than its maximum acti-
vation count, it shall be incremented.

- when a job of a task i is terminated:

« the activation count of task i shall be decremented.

« if the activation count of task i is equal to 1, the task’s state
shall become SUSPENDED.

« if the activation count of task i is greater than 1, the task’s
state shall become READY.

« if the activation count of task 1 is greater than 1, the oldest
pending job shall be removed from the PendingJobList; and
put in the ReadyList.

- for every job activation or termination of task i:

« if the activation count of task i is greater than 0, the size of the
PendingJobList; shall be greater than 0.

« if the ReadyList does not contain a job of task i and no job of
task 1 is running, the PendingJobList; shall be empty.

« the Scheduler shall be called.

Time Manager: these functions handle the computation and the
comparison of absolute deadlines which are used to store ready jobs
in the ReadyList and PendingJobLists. To ensure that the ReadyList
is sorted according to the correct deadline, the following require-
ments must be checked:
« absolute deadlines are computed according to the ICTOH algo-
rithm.
« absolute deadlines are compared correctly according to the
ICTOH algorithm.

Task List Manager: As the scheduler is implemented to select the
m jobs at the top of the ready list to execute them, it is necessary to
ensure that these jobs are precisely the highest priority ones ie. the
ReadyList and the PendingJobLists must be managed as expected.
To this end, the following requirements are considered:
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« when the Scheduler is called, the ReadyList and all of the
PendingJobLists shall be sorted in an increasing absolute dead-
line order.

«+ 2 nodes of the heap implementing the ReadyList shall have
distinct keys.

Scheduler: these requirements are used to check whether the final
results of the scheduling are consistent with what is expected or
not:

« during the execution the m jobs in the RUNNING state have
always a lower absolute deadline than any other job in the
ReadyList or any of the PendingJobLists.

« a processor shall never be idle while the ReadyList or the
PendingJoblList are not empty.

Context Switch Manager: to check that the context switching
is always performed based on the Scheduler’s command. Then, we
can simply verify that:
« the context switching shall be performed according to the Sched-
uler decisions.

5 VERIFICATION APPROACH

Our approach consists of checking the implementation correctness
during the execution of the OS model over a time interval driven
by the Timer Model. The complete model (OS + Timer) is stimulated
using task activation and termination scenarios generated by what
we call verification engines (cf. 5.3). The verification of the complete
model is carried out by checking the requirements introduced in
section 4.2. They are checked using observers that run in parallel
with the complete model to observe its behavior. Since our goal is
to carry out the verification in a modular way, an observer per OS
component is elaborated (cf. 5.1). Then, reachability properties are
expressed in CTL (Computation Temporal Logic) and checked on
the observer states to verify that the system is behaving as required.
The properties are all expressed in a identical way, they are stated
in Section 5.2. A combination of observer models and the complete
system model is formed and inserted as input to the UPPAAL model-
checker (VerifyTA) along with expressed properties. The model-
checker verifies if the given properties describing the expected
behavior hold, or else it generates a counterexample scenario with
the corresponding execution trace (cf. Fig. 4).

Verification
engines
14
OS Model oTL
Properties
Timer Model Yes | Verified model
System Model Verify TA @

Model-Checker

Counterexample
No | execution trace

Observer
models
(requirements)

Figure 4: Formal verification process
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Init
Trigger_synch?
Req 1 &&
Req 2 && !Req_1
Req 3 !Req 2
Verification | !Req_3
Box v

Good

Figure 5: Structure of an observer

5.1 Observer models

The previously presented requirements are complex and some of
them depend on the implementation choices. The expression of a
CTL formula verifying one of them quickly becomes complicated
and requires the nesting of several sub-formulas into a single one
with an exponential size. Especially when dealing with a ReadyList
of n tasks and n PendingJobLists at most. Therefor, we choose to
check them using observer models and express properties on their
states.

The observer models are EFAs with committed states. These
states are priority states, which means that if there are several
fireable transitions, the transition related to the committed states is
fired before the others. This makes it possible to check the system
without the risk of altering its evolution.

Each observer describes a set of requirements used to check an
OS component. All the observers inserted in our model have the
same structure shown in Fig. 5. The execution of an observer is
launched when receiving a synchronization Trigger_synch? from
the system notifying that the corresponding component ended its
execution. The Verification Box is the part of the observer that helps
checking the desired requirements using a set of test functions.
Each requirement is translated to a test function that returns true
or false depending on the result of meeting the requirement. When
a requirement does not hold, the corresponding output transition
leads to a Bad state of the system. On the other hand, if all the
requirements are satisfied, output transition leads to a Good state
and the observer goes back to its initial state to wait for the next
trigger.

Figure 6 shows the observer used to verify the Scheduler. It is
called to check if the two intrinsic requirements of G-EDF scheduler
hold: the priority and the idleness check.

For the verification of the first requirement concerning the prior-

ity, the observer uses the synchronization end_run_elected[core_id]?

to wait for the function tpl_run_elected() to be executed. This syn-
chronization is to ensure that the observer does not permanently
check the associated requirements since there are system states that
are not significant for it. Note that the tpl_run_elected() function
changes the state of the task elected by the scheduler to RUNNING
state and load its context for execution. Thus, at the end of the
execution of this function, the observer checks whether the task
that is being set for execution has a shorter deadline than any
other task in the ReadyList or in a PendingJobList. This function is

P
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l Requirements of the scheduler component

[ Test function

[ Formal property

than any other job in the ReadyList or any of the PendingJobLists"

"during the execution the m jobs in the RUNNING state have always a lower absolute deadline

check_edf_prio()

E <> Scheduler_Observer.Bad

a processor shall never be idle while the ReadyList or the PendingJobList are not empty.

check_idle_cores()

Table 1: Scheduler requirements formal specification

Init

end_run_elected[core_id]?

!check_edf prio(core_id)

Prio_Check (€

end_run_elected[core_id]? Bad

MicroSecondsinc?
!check_idle_cores()

Good

check_edf_prio(core_id)

Inter

Idleness_Check (C

check_idle_cores()

Figure 6: The Scheduler’s observer

always executed on the core where the elected task must be run-
ning. Therefore, the observer is parameterized by the identifier of
the core on which the function is executed. This is specific for a
multi-core system verification. It prevents being in the situation
of checking the requirement for a core that has not yet finished
loading the context of its elected task. Once the observer is syn-
chronized with the tpl_run_elected() function, the priority check
of the elected task is performed at the Prio_Check state. If the test
is satisfied, the observer goes to the Inter state. It is possible that
after the execution of tpl_run_elected() another scheduling event
occurs before the elected task starts its execution. For this purpose,
a transition synchronized with tpl_run_elected() is used to return
to the Prio_Check state in order to do the verification again after
the re-scheduling.

The second requirement, concerning the idleness, it is checked
when all the elected tasks start their execution. It is performed by
using the synchronization channels end_run_elected[core_id] and
MicroSecondesInc. This is performed by synchronizing the observer
with the Timer automaton through the MicroSecondesInc? channel
which indicates the beginning task execution. This way, when it is
synchronized, the observer checks its requirement based on a test
related to the Idleness_Check state.

5.2 Requirements formal specification

Each requirement is formally specified using reachability test on
the Good and Bad states of the corresponding observer. This property
is defined below.

Definition 5.1 (Reachability). This property checks for a given
state s of the model if there exists a path starting at the initial state,
such that s is eventually reached along that path.

The property is expressed in CTL language using two types of
logic operators:

o quantifiers over all paths: like A(¢) to express that ¢ holds
along all execution paths (inevitably); E(¢) for ¢ holds along
at least one path (possibly).

o quantifiers over a specific path: like G(¢) to say that ¢ holds
on the entire subsequent path (globally); F(¢) to say that ¢
eventually holds somewhere on the subsequent path (finally).
In UPPAAL, these quantifiers are expressed using the syntax
[] and <> respectively.

For every observer, the logic operators are used to express two
types of reachability tests: 1) we check if all paths lead finally to the
Good state (A <> Observer.Good), 2) we verify if there exists a path
leading to a Bad observer state (E <> Observer.Bad). If a property is
not verified, the error can be detected by following the transition
that led to the Bad state and a simulation trace generated by UPPAAL
model-checker. Table 1 illustrates the formal specification of the
scheduler requirements.

5.3 Verification engines

In pursuance of verifying the requirements over the elaborated
models, the Scheduler must be triggered and forced to operate in
different situations and scheduling events. For this purpose, an
element which is responsible for generating different scenarios to
call and operate our Scheduler is built. This element is called the
verification engine. The idea is to generate for a given number n of
tasks, all possible sequences of scheduler calls and task execution
over a given Verification Time Interval (VTI). This requires using
models in which time can evolve in order to generate events trig-
gering the Scheduler. Since UPPAAL offers the possibility of using
timed automata, we can use them to model the verification engine.
Thus, two main parts are considered:

activation engine: given a number n of tasks, this engine allows
to generate all possible scenarios of job activation within the inter-
val [1, VTI| which is specified. All possible tasksets that contains
at most n tasks are verified and activations can occur randomly at
anytime and in any order between 1 and VTT time units. For the
sake of simplicity, two timed automata are used to describe this
behavior:

« activate_once: this template is used to activate at most n
jobs only one time between 1 and VTI. Figure 7 shows an
example of activation engine that can activate up to 6 tasks
(n = 6). In the initial state, all tasks are in the SUSPENDED
state. The time progresses continuously using a clock vari-
able timer_c. When the time starts to run, the automaton is
synchronized with the timer automaton using the channel
MicroSecondsInc?. This synchronization is used to prevent
the activation of jobs before that the OS starts. Once the
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MicroSecondsinc?

t3 == true

A3 t0 == true AO
ActivateTask[1]! ActivateTask[O]!
3 = false t0 := false,
task_var[1] := task_3 task_var[0] := task_0
A4 . t4 == true
ActivateTask[0]! ActivateTask[0]!
t4 := false tl := false
task_var[0] := task_4 task_var[0] := task_1
W Main
timer_c <= VTI Al

ActivateTask[0]! th == true

t5 := false,

étask_var[ol := task_5
AS t5 == true t2 := false

timer_c == VTI task_var[1] := task_2

O A2

END t2 == true

ActivateTask[1]!

Figure 7: activate_once template

timer ==
ActivateTask[0]!
task_var[0] := task_0

timer >=1 OAO
J

timer >=1

timer == 0
ActivateTask[0]!
task_var[0] := task_2

timer == 0
Initial Q

O MicroSecondesInc? Main timer >=1
i _ ActivateTask[1]!
timer_c <= Vi task_var[1] := task_1
timer_c == VTI
END

Figure 8: activate_several_jobs template

time starts flowing, the automaton moves to the Main state
and can choose or not to take any transition to activate any
task at any time as long as the VTI date is not reached. This
is carried out using the invariant timer_c <= VTI that also
allows the automaton to end the scenario when the verifi-
cation time is expired. We present some possible scenarios
that are covered by this automaton:
scenario 1: n tasks where n <= 6 (since the automaton can
activate at most 6 tasks): 73/ i € {0, 1, ..., n—1} are activated
simultaneously at t = 1.
scenario 2: n tasks where n <= 6: 7; are activated respec-
tively at different times {#1, ta, ..., £y} such that {1 < #; <
ty <..<ty <VTI}.
activate_several_jobs: This template allows the activation
of several jobs of the same task while previous jobs are not
yet terminated. It follows the same principle as the previous
template. Activations can occur at anytime and in any order
as long as the VTI is not reached. This is mainly used to
check the properties of the PendingJobList since it allows

K.Boukir, et al.

the activation of multiple jobs for the same task even if the
oldest ones are not yet terminated.
Figure 8 presents an example an automaton that can activate
several jobs for 3 tasks at anytime and in random order.
Some possible activating scenarios using this template are
presented in the following:
scenario 1: only jobs of 7, are activated in different dates
{t1,t2, ..o tmax} such that {1 < t; < t; < ... < tmax <
VTI}.
scenario 2: no job is activated which can be a possible sce-
nario as well.

execution engine: it’s a task model which is introduced to de-
scribe an indeterministic task behavior. Our purpose is not to pro-
vide a model that accurately describes how a task runs during its
execution, but to develop a model that covers as many cases of exe-
cution scenarios as possible. To this end, each task is abstracted by a
timed automaton that gathers all the states in which a basic task can
be (cf. Fig. 9). In the Main state of the automaton, a task can either
be SUSPENDED, READY or RUNNING. When it is activated by one of the
previous activation engines (Fig. 7, 8), the task is considered READY
but stays in the Main state. When it is selected for execution by the
Scheduler, the task becomes RUNNING and the function IS_RUNNING()
returns true. The execution time of the task is indeterministic, the
model handles all the possible cases where a task can be executed
between 1 and VTI time units as long as it is in the Main state. For
termination, the task can finish its execution at any time before
the expiration of VTI. To do so, it goes to the Termination state
using a transition which is guarded by the IS_RUNNING() function.
This guard is used to avoid calling the TerminateTask automaton
while the task is not running or preempted. The execution can be
performed in a best case scenario in which a task runs for zero time
units and the worst case scenario in which it runs for VTI time
units. All scenarios in between are treated as well. This widens the
scope of verification and allows multiple task configurations to be
verified.

Main IS_RUNNING(s_task.id)
timer_c <= VIl && timer_c < VTl && !(IS_KERNEL_MODE())

IS RUNNING(IS_RUNNING(s_task.id))

TerminateTask[s_task.id.core_id]!

timer_c == VTI
Execution_End .

Figure 9: Task model template

5.4 Verification scenarios

Since our goal is to be able to verify the functional correctness of
the implementation, task configurations are chosen in such a way
that they provide scenarios with the respect to the requirements
presented in 4.2. In this part, we present examples of activation
and execution scenarios used for verification. We consider that
the tasks have to compete for execution on 2 cores. Note that the
value of VTI chosen for each scenario corresponds to the value
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required to conclude that the verified component is behaving cor-
rectly with the respect to its requirements. For example, to verify
that the scheduler is called when an activation occurs, we just need
a task to be activated and check the corresponding property in the
component observer in question. Such a task can be activated using
the activate_once engine and a VTI of one time unit is sufficient to
observe the activation. The same logic is used for every requirement
to chose the values of VTI in the following.

(1) for the Task Manager: checking its requirements can be suf-
ficient by specifying an application with one task that can
run in an interval allowing multiple activations of it using
the activate_several_jobs template (Fig. 8). Activating sev-
eral jobs of a task before terminating the old one allows
the checking of requirements related to the activation count
incrementation/decrementation, the switching between the
ReadyList and the PendingJobList and also if the Scheduler
is called for every scheduling event (activation/termination).
Since the automaton allows job activations that are sepa-
rated by one time unit minimum, it is necessary to have
VTI > max_activation_count + 1 in order to consider the
case of activating all the jobs of the task.

(2) for the Time Manager: the purpose is to calculate and com-
pare successfully deadlines of different tasks. Thus, the VI
to verify the requirements of the Time Manager must be
higher than the maximum value that a deadline can take
in a cycle. If an absolute deadline is represented on n bits,
the maximum value that it can have is P = 2™ — 1. Thus, it
is possible to consider a VTI of 8 time units for deadlines
that are represented on 3 bits in order to exceed the timer’s
period and cover the case of two deadlines represented on
two different cycles. An example of a task configuration
can be: 2 tasks to be executed on 2 processors with activa-
tions generated by the activate_once template. A possible
scenario of this task configuration can be the activation of
the two tasks at the same time. This necessarily leads to a
deadline calculation first and comparison since the 2 tasks
are compared before being stored in the ReadyList.

(3) for the Task List Manager: to check the heap property for the
ReadyList, 2 tasks are needed. To cover the case of having
two jobs linked in the same heap node, we consider that 2
tasks have the same relative deadline. In order to check the
PendingJobLists we consider that the tasks have a maximum
activation count of 3 which covers the case of having one
active job per task in the ReadyList and 2 pending jobs per
task in their PendingJobLists.

(4) for the Scheduler: considering that the execution is carried
out on two cores, at least two running tasks are needed. In
order to check the priority requirement, a third task with dif-
ferent deadline must be considered to compare with the other
two tasks. The requirement asserts that a running job shall
have a lower deadline that any other job in the ReadyList
or any of the PendingJobList. Thus, pending jobs must be
considered for the three tasks. In that case, an application
composed of 3 tasks with a maximum activation count of
two each is proposed.
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(5) for the Context Switch Manager: the consideration of a single
task in a VTT greater than its maximum activation count can
be relevant to check the context switching requirement after
the activation and the termination of the task.

6 DETECTED SCHEDULING ERRORS

To apply our verification approach, the scenarios described above
were tested on the complete OS model. Reachability tests on the
observers bad states were carried out to check the requirements
introduced in Section 4.2 (E <> Observer.Bad). If this property holds,
it means that the expected behavior of the corresponding compo-
nent is not achieved. The counterexample sequence execution is
generated along with the sequence variable to indicate the branch
that led the system to the Bad state. This check allowed us to find
out some implementation errors in the scheduling perimeter source
code which are mainly the consequence of Trampoline’s transition
from partitioned to global scheduling. These errors were detected
by analyzing the generated counterexample scenarios.

1. In the initial version of Trampoline, in which partitioned
scheduling was supported, each task is statically assigned to a
single core for its execution. Thus, if a task 7; is preempted, there
is no possibility that it will be selected to be executed on another
core. Therefore, in the initial implementation of the Trampoline’s
scheduler, a preempted task is only put back into the ReadyList at
the end of context switching.

When moving to global scheduling, Some call sequences of OS
functions has been preserved which conducted to the following
error. A task 7; which is preempted on a core C;, might have a
higher priority than a task 7; running on a core C;. However, if
7; is only put back in the ReadyList at the context switching level
(after the scheduling), the Scheduler can not take it into account
while taking its decision. As a result, the running task r; will have
a lower priority than the ready task z;.

Counterexample scenario. The aforementioned error was de-
tected under the scenario intended to verify the Scheduler’s require-
ments (cf. 5.4): 3 tasks: 79, 71, and 73 to be executed on 2 cores that
are denoted Cy and C;. Each task 7; has relative deadline denoted by
D;. The activation is performed using the activate_several_jobs
template since each task 7; have a maximum activation count equal
to 2. The considered VTI is 7 time units. The counterexample sce-
nario that was generated by UPPAAL model-checker is described
below:

e at fy, ]11 and ]2l are released. Their absolute deadlines are
calculated: d} =Dy +t; and d; = Dy + t; such that all1 < d;.
Thus, ]1l is scheduled to be executed on core Cy and ]21 on
core Cj.

e atty > tq, ]01 is released, its absolute deadline is calculated:
dé = Dy + t3 such that dé < dl1 < d;. ](} is put in the
ReadyList and the Scheduler is called. Since dé < d%, the
Scheduler preempts ]1l and extracts ](} from the ReadyList to
be executed on core Cy.

o after the context switching, ]11 is put back in the ReadyList.

This scenario violates the requirement of the priority according
to G-EDF policy. At t; in the execution, job ]11 is stored in the
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l Component [ Scenario [ Number of explored states [ Runtime (ms) Memory (Kibytes) ]
Task Manager - one task 10965 1640 63780
- max activation count = 2
-VTI=3
Time Manager - 2 tasks 178691012 3.0733e+07 33650 960
- max activation count = 1
-VTI=38
Task List Manager - 2 tasks 13451183 2.42331e+06 1537936
- max activation count = 3
-VTI=7
Scheduler - 3 tasks 1362177 190 1.78361e+08 157 922 424
- max activation count = 2
-VTI=7
Context Switch Man- | - one task 6285 900 63368
ager - max activation count = 1
-VII=2

Table 2: Verification performances

ReadyList while ]1.2 which has a lower priority is running on core
Ci.

2. As mentioned before, in the partitioned scheduling version
of Trampoline, a task is statically assigned to a core. The identifier
of this core is initialized in an API layer function that does not
belong to the scheduling perimeter. In some specific cases, such
as the case of AUTOSTART tasks 2, a macro of the Context Switch
Manager is called through the API aforementioned function taking
the wrong identifier of the core and ignoring the global scheduling
decision. This leads to two possible situations where the G-EDF
decision is not respected: (i) the first one involves executing a task
on a core other than the one indicated by the G-EDF scheduler; (ii)
The second, which is the most serious, is to execute a non-priority
task according to EDF on the core saved by the API function.

Counterexample scenario. This error was detected for the pre-
viously presented scenario of the Scheduler verification, but also
under a scenario intended to verify the Context Switch Manager.

3. Other minor errors were also detected using our scenarios:
(i) saving the context of a terminating task by calling the wrong
Context Switch Manager function; (ii) request loading the context of
a newly activated task which is a consequence of the previous error
; (iil) not updating the size of the PendingJobList after removing a
pending job.

This approach allowed us to fix the found :errors in the imple-
mented scheduler and ensure its correctness. Due to verification
engines, several non-deterministic scenarios of task activation and
termination were tested in the model. Throughout the development
of this experiment some limitations were encountered. One notable
issue is the exponential growth of state space during the execution
which limits the interval VTI during which the verification can
be conducted. Still, thanks to the scenarios discussed in Section
5.4, the requirements were successfully verified. Table 2 shows the
verification performances of the approach using a machine of 128
Mbytes of memory and 282428 MHz of CPU.

2Tasks that should start automatically and synchronously with the OS start.

Note that in addition to the requirements presented in Section
4.2, the complete model was also previously checked using the
property "AG not deadlock” in order to conduct our approach on a
deadlock free system. This property means that deadlock does not
occur for any path of the model, globally.

7 CONCLUSION

We proposed a formal method to verify the implementation of
scheduling policies based on model-checking. The approach was
tested on an implementation of G-EDF scheduler within Trampo-
line. To do so, a first step of modeling Trampoline’s components
that are involved in the scheduling decision was conducted. Models
abstracting the functioning of these components were elaborated
using Extended Finite Automata and integrated to an existing model
of the OS. The variables, the actions and the conditions manipulated
in the models are those present in the source code of Trampoline’s
components. Thus, these models are very close to the actual source
code due to the similarity between the semantics of C language and
UPPAAL language which makes the verification on those proposed
models reliable. The elaborated models were combined with a timer
models that abstracts the time progress in the OS to form a com-
plete model (OS model + timer). The second step was to establish
requirements that are sufficient to verify on the elaborated models.
These requirements were defined according to the expected behav-
ior of the scheduler. They are used in observers that are inserted
in parallel with the complete model to observe its behavior during
the execution. The execution of the model was stimulated using
verification engines which provide non-deterministic scenarios of
activation and termination of jobs. Therefore, the scenarios that are
able to trigger the scheduler in accordance with the requirement
to be checked were proposed. This process allowed us to identify
some implementation errors and fix them. So far, the proposed
approach showed promising results for the given scenarios. Some
constraints were noted, namely the combinatorial explosion of the
state space beyond a certain verification time since most formal
methods have this property. In order to remedy this problem, our
model is abstracted as much as possible. The model has only 2 clock
variables for time progression, the path interleaving is avoided
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using synchronization channels in all automata and observers con-
tain only Committed states. A next step of this work will be to
demonstrate that the conducted tests are sufficient to validate the
functional correctness of the G-EDF implementation. Furthermore,
other techniques for model abstraction to limit the explosion of the
state space may also be studied.

This work proposed an analysis of feasibility of this formal ver-
ification approach for schedulers implementation. Since it shows
promising results, model-checking can be engineered and applied
for the implementation of other sophisticated scheduling policies.
Accordingly, we intend to pursue this work and extend it to some
of these policies.
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