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ABSTRACT
Significant work has been presented over the last decade looking at
the application of Mixed Criticality Scheduling. The premise being
that if a failure occurs the scheduler performs a mode change from
normal mode to high-criticality mode. In high-criticality mode,
some low criticality tasks are given a reduced service (e.g. not
executed or executed at a different period). Recently work has
been performed to bound the number of low criticality jobs that
might be skipped while the scheduler operates in high-criticality
mode. However a significant gap in the analysis is to understand
for how long the service to low criticality tasks may be reduced, i.e.
how often the system switches to a high-criticality mode and how
long the high-criticality mode is sustained. This is essential as part
of supporting software certification. In this paper we consider a
process, agnostic to the underlying scheduling strategy, designed to
allow a system integrator to address this gap by assessing the level
of service provided to low criticality tasks. The result is a safety
argument with supporting evidence based on a real life case study,
taken from a DAL-A certified aircraft engine control system.1
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1 INTRODUCTION
Real time embedded software tasks developed for safety critical
systems, such as civil avionics engine control systems, are typically
developed according to a specific Development Assurance Level
(DAL) [22]. The DAL indicates a criticality level for a component
and is assigned based on the consequence to the system’s safety
that a failure of this component could cause. This paper considers
the model presented in DO-178C [21], that defines DAL-A as the
highest criticality level and DAL-E the lowest.

It is typically assumed that the amount of effort assigned to
producing enough evidence to prove the correct operation of a
software component is directly proportional to its DAL [23]. In
practice though, it is still desirable that low DAL software operates
as expected; a low DAL component may also be essential to achieve
the desired customer capability. Put simply a task’s criticality is
not necessarily related to its ‘importance’. Furthermore, a low DAL
task may still be bound by strict temporal requirements; a task’s
criticality is independent from its temporal properties.

In the literature a Mixed Criticality System (MCS) is a system
which combines software of multiple criticalities on the same pro-
cessor. The dominatingmodel that has emerged in the field of Mixed
Criticality Scheduling is that of the double computation time model
first introduced by Vestal [23]. The model uses two measures of
Worst Case Execution Time (WCET) for each task: one measure for
the low criticality mode (CLO ), and a higher figure for the high crit-
icality mode (CHI ). In practise CHI may be derived from a sound
WCET analysis whereas CLO could be derived from a best effort
approach. This model essentially allows a system integrator to cap-
italise on the (strong) assumption that a high criticality task’s CHI

is pessimistic, while its CLO may be reliable, but optimistic. This is
facilitated by allowing low criticality tasks to execute as long as all
tasks within the system execute within their CLO bounds. If any
tasks execute beyond these bounds, service to low criticality tasks
may be reduced or stopped.

Regardless of the scheduling methodology employed, the gen-
eral assumption in the literature is that low criticality components
can be denied service at times of heightened system utilisation.
In practise, in a well-designed system this should only occur in
extreme cases, if ever. Unfortunately, this potential denial of service
cannot be quantified through the schedulability analysis and the
performance of the integrated system in operation needs to be con-
sidered to understand how long and how often loss of services may
occur. This is because it is not known how many tasks, if any, may
execute beyond their timing bound within a certain time window
without executing the system in a representative environment. In
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essence, it is difficult to understand the performance afforded to low
criticality tasks in a MCSwithout performing a dynamic assessment
in a representative environment. This means it is difficult to obtain
concrete proof that a lower DAL component with strict timing
requirements will receive a good enough level of service to fulfil
its mission requirements without modelling it as a high criticality
component with the additional certification effort required.

This paper considers how a system integrator may develop a low
DAL task and express its requirements, with a use case taken from a
real aircraft engine control system. The aim is to describe a process
that could be employed to assess the level of service afforded given
to a low criticality component in order to allow an informed decision
on system performance to be made, and by providing evidence
supporting timing requirements with a sufficient confidence level
to support certification arguments.

The key contributions of this paper are as follows:
• To provide a process for assessing the service afforded to a
low DAL task, agnostic of scheduling methodology.

• To assess how realistic claims can be expressed as part of a
certification case or argument.

• To demonstrate the proposed process in the context of a real
aircraft engine control system application.

2 SYSTEM MODEL
We introduce in this section the system model underlying our eval-
uation. This paper focuses on the Robust Mixed Criticality Model
without loss of generality. The reason for focusing on this model is
that the concept of being able to carefully manage a graceful degra-
dation to the system, including the introduction of tasks that can be
disabled for specific periods of time (encompassing the weakly-hard
model), is well suited to the case study investigated here. Whereas
the classic MCS models, such as the AMC, offer no graceful degra-
dation and instead subject low criticality tasks to an immediate
drop in service, if required.

Note that the low criticality task service assessment conducted
in this paper relies on the statistical analysis of simulations of the
schedule. As such it is designed to be agnostic to the underlying
scheduler methodology, provided the schedule can be accurately
simulated. Additional results on the application of the service assess-
ment method on the Robust and AMC+ MCS models are available
in [15].

2.1 Task model
A system is defined as a collection of tasks τi , where 1 ≤ i ≤ N , each
denoted by a deadline Di , a periodTi , a release jitter Ji , a criticality
level Li , and one or manyWCETsCLi . A task DAL level may not be
related to its criticality; a low DAL task may be modelled as low or
high criticality but the computation of higher criticality CLi comes
at the cost of additional certification effort. Conversely higher DAL
tasks require stronger guarantees that their timing requirements
are met. The release jitter Ji denotes the maximum permissible
variation of the period Ti for the release of the task. Each task is
assigned a fixed, unique priority Pi , where 1 ≤ Pi ≤ N . Tasks may
be clustered in a smaller number of RTOS tasks to reduce the impact
of system overheads [17]. Additional constraints between tasks are
captured in the form of transactions, if the execution of one task τi

relies on the completion of another task τj . Transactions support
ensuring that a set sequence of activities completes in the correct
order with a set deadline.

Without loss of generality, we consider only two criticality levels,
high and low, with their respective timing bounds CHI and CLO .
CLO can be derived from best effort approaches, while CHI is a
sound estimate of the task’s WCET. A task τi is said to be schedu-
lable if its worst case response time (WCRT) Ri , is less than its
deadline Di . A task is said to have a hard deadline (Di ≤ Ti ) if its
execution must meet every deadline. On the other hand, a robust
task may drop jobs depending on the current system mode. Switch
to different modes may occur after a single or multiple jobs overrun
their tasks’ CLO as discussed in the next Section.

2.2 Robust Mixed Criticality Systems
The Robust Mixed Criticality Model as presented by Burns et al. [7]
introduced the following definitions for a robust mixed criticality
system:

Definition 1. A robust task is one that can safely drop one non-
started job in any extended time interval.

Definition 2. The robustness of a complete system is measured
by its F count (how many job overruns can it tolerate without jobs
being dropped or deadlines missed) and its M count (the number
of job overruns the system can tolerate once each robust task has
dropped one job).

Definition 3. A resilient system is one that employs forms of
graceful degradation that adequately cope with more than M over-
runs.

A fault is measured when one task overruns its CLO , where as
an error is the manifestation of a one or many faults and represents
the point where a task fails to adhere to its timing requirements.
A resilient system is designed to cope with one or many faults,
while avoiding errors. The resilient system model introduced in [7]
recognises 4 different criticality modes:

• low criticality, where all tasks are allowed to execute,
• F -mode or fail robust,
• M-mode or fail resilient,
• and high criticality.

Mode switching occur on successive faults, i.e. when tasks over-
run theirCLO . The resilient system model is capable of coping with
F faults (F -mode or fail robust), before reverting to a mode where
robust tasks skip their jobs (M-mode or fail resilient). At this point
the system is capable of coping with further faults up to a total of
M faults, where F < M . This provides a set bound on the size of
a robust task skip burst. Once the fault count increases above M ,
the system reverts to a high criticality mode where no service is
provided to low criticality tasks. Once the system reaches the idle
state, the failure count is reset and, if required, the system reverts
to the normal mode.

The schedulability analysis presented in [7] provides a proof that
high criticality, robust tasks, meet their schedulability requirements.
The analysis also provides a bound on the number of jobs a robust
task may skip between idle points. However, the analysis provides
no guarantees on the service given to low criticality tasks, or indeed
the time between individual robust task skip bursts.
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The aim of the process presented in the remainder of this paper
is to assess the performance, and the failure rate afforded to a robust
or low criticality task in a representative system. As no service is
provided to low criticality tasks in the high criticality mode, it is
important to understand how often and for how long the system
may sustain the high criticality mode. The statistical analysis is
designed to then provide a system integrator with the information,
and confidence, required to make an informed decision on whether
a robust or low criticality task will meet its temporal requirements.

3 CASE STUDY
The case study investigated as part of this paper is taken directly
from a Rolls-Royce Aircraft Engine Control System [17]. The exist-
ing system consists of a set of several hundred tasks in the order of
tens of thousand lines of code. In order to support this study the
code base has been ported to a scheduler designed to implement a
robust system [7]. The ported system consists of 17 cluster tasks
with support mechanisms provided by a commercial-off-the-shelf
RTOS [17]. All tasks in the system are currently certified and ran
respectively as high DAL and high criticality ones to satisfy to their
timing requirements.

In order to provide a secure record of engine performance, the
control system regularly writes system parameters to flash memory.
The flash memory is non-volatile and secure, but the time taken
to write to this flash memory is considerable. The control system
contains a periodic task responsible for writing data to flash mem-
ory. This task reads from a memory buffer, written to by other
tasks, before copying the buffer to flash. The task’s execution time
being directly proportional to the amount of data being written.
The amount of data written to the data store is thus minimised
as far as possible to prevent continuous blocking induced by the
task. In order to support future design and maintenance goals, it is
desirable to reduce this limitation.

The task is a lower DAL task with strict timing requirements.
While failure would have limited safety implications, the shared
buffer should be cleared on a regular basis to ensure other tasks
can update their parameters without data loss. At present the task
is certified as a high DAL, high criticality component and treated
as a hard real time task to ensure its strict requirements are met.
However the task could more easily be designed to execute for
longer, with an assumption that it may periodically drop jobs. The
move to a robust system allows such requirements to be expressed,
verified, and enforced through necessary mechanisms to protect
the wider system.

As part of a transition to a more flexible, mixed-criticality system
design, we reassessed the DAL level and criticality of the flash
memory task to one reflecting its lower impact on the system overall
safety. The newly configured flash memory task is designed to
continuously write data when called to do so. If a job of the task is
skipped, then it will simply resume writing to memory from the
next entry in the memory buffer. The principal requirement is that
the memory buffer does not overflow, and so the task is designed
to write more data than necessary on each invocation. So following
a period of reduced service the task is able to recover and return to
normal operation provided it has sufficient time.

The newly configured robust low DAL flash memory task was
integrated into the schedulability analysis of the control system.
The task execution time budget was increased, while its period was
decreased, to reflect the operational change in its behaviour. Overall
this increased the permissible utilisation of the task by a factor of 60.
The system was shown to be schedulable in the low criticality, fail
robust (F-mode), fail resilient (M-mode) and high criticality modes
as defined by the robust model [7]. This increase in utilisation
was only permitted thanks to the use of a mixed-criticality system
exploiting the difference between the analysed (sound, safe and
pessimistic) WCET used for theCHI and the (test measured, robust
but potentially optimistic) system high water mark time used for
each task’s CLO .

For this analysis, the following assumptions surrounding the
robust task have been defined:

• Due to the task’s increased execution budget, if given full
service the task is capable of writing data to flash memory
at a faster rate than the reporting tasks can write data to the
shared memory buffer

• The shared memory buffer is sufficiently large to allow the
flash memory task to skip up to four jobs

• Once the flash memory task skips a burst of up to four jobs,
the task must execute the following four jobs in order to
allow the task to avoid data loss.

Therefore the overriding requirement for analysis is that each
time the robust flash memory task suffers a job skip burst, it should
have a clear period of at least four successful executions before it
can skip a job again. If the task skips a job in less time, the task is said
to have suffered an error. The task period itself is 12.5ms, therefore
the basic requirement for the task can be defined as follows:

Definition 4. A flash memory task error is recorded when a job
skip bursts lasts more than 50ms or two separate job skip bursts
occur with a less than 50ms interval.

The following assumptions have been made about the wider
system:

• The occurrence of an individual task overrun is very rare.
Rationale: The defined CLO for each task, representing the
computation time beyond which a task would register a failure,
has been generated from an extensive testing regime and car-
ries with it a high level of confidence. However, being derived
from a simple measurement technique it is still assumed to be
optimistic.

• Individual task overruns are independent and are not reliant
on the current operation of the control system. Rationale: an
overrun is an event unique to each task, and not a systematic
event caused by an error or operation at the system level.

• Task overruns can be assumed to be independent of hardware
operation. Rationale: The system is designed to be resilient to
external hardware failures, secondly the target processor design
is compliant with DO-254 as a high criticality device.

The requirements on the robust task can be expressed as a (4−8)-
firm deadline [9]. By scheduling the robust task in the high critical-
ity mode at a reduced rate, the schedulability analysis would then
verify it is allocated sufficient service. However the contribution
of the robust task to the utilisation of the high criticality mode
renders the system unschedulable. Instead, we propose a process
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to assess the service received by the robust task and validate its
requirements, by considering how often the system switches to
high-criticality mode and how long the high-criticality mode is
sustained.

4 CERTIFICATION REQUIREMENTS
This paper focuses on an aerospace application, and so the guidance
provided by DO-178C [21] is used as the focus of this work. How-
ever the guidelines are considered similar to those detailed in other
software domains such as ISO26262 and IEC61508 [10]. The focus
of this work is predominately on understanding the performance
of a robust and/or low criticality component, the certification re-
quirements surrounding software partitioning and mixed criticality
have been assessed in a parallel work and are not discussed fur-
ther in this paper. Therefore this paper will only consider temporal
performance.

DO-178C requires that the certification documentation is able
to justify the accuracy, correctness and robustness of the system.
This requires an understanding of the temporal performance of the
system (with respect to task WCETs and system schedulability),
and confirmation that the system’s temporal requirements have
been met.

When reviewing low criticality and/or robust tasks, this requires
the system integrator understand the potential error rate of each
task’s temporal requirements, and furthermore show that this rate
is acceptable given the systemwide effect of a temporal requirement
error.

The prior work in the field of MCS has presented static analysis
models for proving the service afforded to high criticality tasks.
However the previous work has not yet offered solutions for sys-
tem integrators to generate the evidence required to meet the low
criticality task certification requirements discussed in this section.

5 ANALYSIS OF ROBUST TASK
PERFORMANCE

Regardless of the method chosen to control low criticality or robust
tasks, the performance of said tasks is wholly dependant on the
actual performance of the system. Therefore the process conducted
here is based on a statistical assessment of a set of execution results
extracted from either a test rig execution during a system-level
test campaign, or from a scheduler simulation of the system in
question. This paper predominately follows the results obtained
from simulation. The use of which allows a significantly larger data
set to be compiled, de-risking the system design early in its life
cycle. Ultimately these results are supplemented and improved as
testing of the system progresses by test data obtained from a full
end to end test campaign.

The simulator is initialised using execution profiles extracted
from the system during task-level testing designed to mimic system
behaviour while in operation [16]. This ensures that the execution
profiles provide a realistic representation of the task’s actual per-
formance when in operation. These execution profiles, including
RTOS overhead measurements, are input into a bespoke scheduler
simulator which is executed on a high performance server over a
thousand times in order to build up a comprehensive set of results.
The simulator has been validated against the real system, and is

designed to be reviewed and improved as additional real system
performance data is generated.

The execution time of each task is output by the scheduler, as
is information on whether a task executes, or is blocked. The data
output by the simulator is analysed to measure the time between
each data-set skip. A single execution simulates thirty minutes of
scheduler time.

The results are then input into the statistical assessment intro-
duced in this section, that aims to provide a confidence in adherence
to the low criticality component requirements, as well as providing
an understanding of the probability of the component’s require-
ment being broken. Together these results should allow a system
integrator to make a guided decision on whether the low critical-
ity component’s performance is acceptable or not. This forms the
principal contribution presented in this paper.

The following sections introduce a Goal Structured Notation
(GSN) argument for the approach, as well as providing results from
applying the analysis to the Rolls-Royce case study introduced in
Section 3.

5.1 Goal Structured Notation
Within this and the following sections, we use the Goal Structuring
Notation (GSN) [14]. GSN is a widely used approach within the
industry [1]. The principal purpose of a goal structure is to show
how goals (claims about the system) are successively broken down
into sub-goals until a point is reached where claims can be sup-
ported by direct reference to available evidence (solutions). As part
of this decomposition, using the GSN it is also possible to make
clear the argument strategies adopted (e.g. adopting a quantitative
or qualitative approach), the rationale for the approach (assump-
tions, justifications) and the context in which goals are stated (e.g.
the system scope or the assumed operational role). The GSN ar-
guments in paper use Goals (G), Assumptions (A), Statements (St),
Context (C), and Solutions (S). For further details on GSN see [14].

Figure 1 shows a GSN argument that expands how Definition 4
is assessed. The principal claim (G0) that two job skip bursts will
not occur within 50ms, is analysed using a statistical analysis of
results obtained by a simulation of the system.

This is in the context that the simulation is a representative
example of the real system, and that the overall estimated error
rate is acceptable. This error rate can then be taken forward and
included as part of a system wide certification case for the low
criticality or robust software.

The strategy for the analysis is broken down into four key sub
claims, as follows:

• G1 - Confidence - The simulation achieves appropriate cov-
erage

• G2 - Likelihood - The simulation output provides an under-
standing of the likelihood of an error

• G3 - Correctness - The simulation is a valid representation
of a real system

• G4 - Acceptability - The minimum time between data-set
skips is acceptable.

The following sections describe each of these goals in more
detail.
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Figure 1: Goal Structured Notation Argument for the Overall low DAL Requirement

Figure 2: Goal Structured Notation Argument Exploring the Confidence of the Analysis

5.2 G1 - Confidence
In order to properly understand the performance of the system it is
vital that the statistical analysis is performed across a significantly
large sample that represents the real performance of the system.
Claim G1 aims to confirm this is the case and aims to understand
whether enough testing has taken place.

Figure 2 shows the extension to claim G1. This claim is fulfilled
by ensuring the simulation executes for long enough to indicate
that most execution time variations have been observed (G5) and
that further exploration of the search space does not reveal new
results (G6).
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Figure 3: Changes in Confidence Interval (left), Mean (right top) and Minimum (right bottom) of the Time Between Job Skips
Over Simulation Time

5.2.1 G5. Claim G5 is concerned with understanding whether a
single simulation executes for long enough, and is supported by an
assessment that reviews whether continued simulation reveals any
additional differences or significant differences in the distribution.
This is important to understand as it helps build the argument that
the statistical analysis is performed across a fully representative set
of execution profiles. This is tested by reviewing the minimum time
between job skips (G11), as well as the confidence interval (G12)
and the mean (G13). In all cases the aim of the assessment is to
review whether, as the simulation continues, the results have con-
verged and significant differences are not expected. Convergence
is assessed via a defence in depth approach through different inde-
pendent routes.

Figure 3 shows the results from one execution of the simulator
and illustrates the variation in the confidence interval, mean and
minimum as the simulation progresses. The confidence interval in
particular captures the range within which there is 95% confidence
that themean resides. As an example, the results show that themean
time between job skips starts around 450±100ms and converges
at the end of the simulation to 350±10ms. Despite a significant
amount of variability initially, the confidence interval significantly
decreases around approximately 10ms, and the mean and minimum
converge around 350ms and 60ms respectively. The key to analysing
these plots is to identify whether the simulation results are changing
as the simulation continues, or in essence do the results indicate
that further exploration does not reveal any new or different results.

5.2.2 G6. Claim G6 is concerned with understanding whether a
large scale evaluationwith numerous simulations produces a similar
result to that of a single simulation. This aims to provide further

confidence that the search space has been explored sufficiently. The
claim confirms firstly whether the analysis is repeatable, that is the
results from multiple short simulations create a combined result
equivalent to one long-running simulation.

Claim G6 is supported by an assessment of the distributions
of time intervals between job skips over 1000 iterations of the
simulator using both a χ2 distribution equivalence test (G8) and an
Earth Movers Distribution (EMD) (G9). In both cases the simulation
from the first test is used for comparison against the remaining 999.
Secondly G10 claims that when two short simulations are appended
together they provide equivalent results to one long simulation.

Figure 4 shows the EMD result from executing 1000 simulations.
In each case each, the distribution of time interval between job
skips was randomly sampled by selecting a slice of the simulation.
Increasingly bigger portions of the simulated scheduler time were
considered (1%, 5%, 10%, 20%, 40%, 60%, 80%, 100%) to compare
increasingly longer simulations. This randomly sampled set was
then compared, using an EMD test, to a random sample of the same
length taken from the first simulation. As can be seen from Figure 4
the larger the chosen sample, the closer the two randomly selected
distributions, secondly the results are shown to converge as more
data is appended to the sample.

Secondly the results of the first simulation was fitted to a distri-
bution in order to produce an expected distribution to test against.
We fitted the first distribution against an exponential distribution;
amongst all considered distributions, the exponential distribution
provides the best fit according to a Kolmogorov-Smirnov Goodness
of fit test (p < 10−70). Each of the subsequent 999 distributions pro-
duced by each of the simulations were then compared to this fitted
distribution using a χ2 distribution equivalence test. The job skip
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Figure 4: Comparison of EMD over 1000 Simulations
intervals were binned to apply the χ2 equivalence test, i.e. the sam-
ples were placed into intervals of geometrically increasing size from
50ms to 2s such that sufficient observations are available per bin and
more precision is achieved close to the analysed task requirement.
The equivalent test showed all simulations were produced from the
same population (mean result - χ2(12,n = 5080) = 171,p < 0.01)2.

5.3 G2 - Likelihood
Once a robust and reliable data set has been generated, the next step
in the process is to analyse the results to understand the probability
of breaking the requirement. This provides a real measure that can
be used to make a decision of whether the service given to the low
criticality task is acceptable or not.

Figure 5 shows the process for understanding the probability of
the flash memory component suffering a timing requirement error.
Claim G2 is split into two parts, the first is an assessment based on
the observed performance of the system (G16, G17), and the second
is a statistical inference to understand the exceedance probability
of the sample (G18).

5.3.1 G16, G17. The principal objective of viewing the range of
simulated results is to gain confidence that the minimum, and any
results that are close to the minimum requirement, occur with a low
probability. That is, denials of service to the low criticality tasks
are infrequent.

Figure 6 shows the range of results obtained during one simula-
tion. The main aim of reviewing the figure is to assess how far from
the minimum requirement the majority of the inter-quartile range
lies. In particular to provide confidence; the majority of results
should lie well above the requirement.

To further understand the extreme values in the simulation a
percentile test was applied to the full set of 1000 simulation results
obtained in Section 2, the results showed that 62.5ms represented

2 χ 2 results throughout this paper are denoted using the following terminology -
χ 2([degrees of freedom], n = [number of samples)] = [result]), [statistical significance].
If the statistical significance (or p value) is less than 0.01, then the two compared distri-
butions can be said to come from the same population, i.e. they are not independent.

the 0.1% percentile. The analysis is expanded in Table 1 which
shows the percentage results observed close to the requirement of
50ms.

These results should be used to provide some confidence that
the vast majority of results are observed well above the minimum
requirement providing confidence that a breach of the requirement
is a one-off, rarely seen, event.

5.3.2 G18. Understanding the probability of breaking the require-
ment is assessed in one of two ways. The probability of exceeding
the requirement is preferably estimated using an Empirical Cumula-
tive Distribution Function (ECDF). However, if the requirement has
not been broken during the simulation or there is an insufficient
number of observed job skips, ECDF might result in inaccurrate es-
timates. In such scenarios, the exceedance probability is estimated
using a fitted distribution. Both techniques require the analysed
samples to be independent and identically distributed (i.i.d.). Indi-
vidual task overruns are assumed to be independent of each other
and of the prior behaviour of a task (§ 3). This is modelled in the
simulations as the execution time of each job is randomly sampled
from its task’s execution time profile, a representation verified as
correct under G3.

We picked the results of one simulation which did not break the
requirement and thus cannot be analysed through ECDF. The simu-
lation was fitted to an exponential distribution in order to produce
a continuous distribution for analysis (p < 0.01). The probability of
obtaining a job skip interval of less than the requirement with this
distribution was found to be 4.8%.

Secondly the distributions of job skip intervals from all 1000
simulations were combined, as justified by claim G6, thus covering
all observed of job skip intervals during our simulations. In this
case this extended distribution did include multiple instances where
the requirement had been broken. Using an ECDF function, the
probability of error was found to be 0.005±0.002% (with 99.99%
confidence). While the fitted distribution results in more pessimistic
results it operates even with a far smaller sample size.

5.4 G3 - Correctness
The results obtained so far have focused on a simulation of the
system. This is advantageous as the simulation can provide a much
larger data set to analyse than is possible from execution on a real
system test rig, secondly the results can be generated much faster
than possible on real hardware. However, it is important to review
the statistical results obtained to verify that they provide a valid
representation of the real system.

Figure 7 extends the GSN argument and examines how the analy-
sis provides representative results of the actual system performance.
Firstly the claim assumes the simulation has been executed for a
sufficiently long amount of time, as verified by claim G1 in Figure 2.
Secondly the claim is verified using real results obtained from test
rig operation (G21 and G22).

5.4.1 G21. Claim G21 concerns the input timing profiles used to
generate the simulator results. As noted in the introduction to this
section, the simulation is setup using a set of task timing profiles
generated through task-level execution in a representative envi-
ronment, as detailed further in [18]. These timing profiles provide



RTNS 2020, June 9–10, 2020, Paris, France Law, Bate, and Lesage

Figure 5: Goal Structured Notation Argument Exploring the Probability Assessment of the Requirement

Figure 6: Box Plot Diagrams Showing the Range of Job Skip Interval Times, With a Zoomed-Plot on the Right Around the
Minimum Requirement
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Time Between Skips % Results More Frequent Than Time Between Skips
50ms 99.9948%
60ms 99.9947%
70ms 99.76%
80ms 98.73%
90ms 96.76%
100ms 75.43%

Table 1: Percentage Results Observed Close to the Minimum Requirement After 1000 Tests

Figure 7: Goal Structured Notation Argument Exploring the Correctness of the Analysis

a representative set of results for the scheduler simulation to ran-
domly iterate over.

Secondly once a full system test rig campaign has been com-
pleted, the results from the real system should be used to both
improve the simulator, and to compliment the simulation produced
results in order to improve accuracy. This full system test campaign
is expected to provide a significantly large set of results to boost
confidence in the statistical analysis, arguably approaching a point
where the simulation may not be required. However, these results
would be expected to take significantly longer to generate, and
would be provided at a time in the software design life-cycle too
late to allow cost effective improvement.

One risk with this approach is that the test rig campaign may
indicate the simulation does not deliver representative results, this
is a significant risk with any approach utilising a simulator and is
in this case unavoidable. The risks are mitigated by the fact that, as
is frequently the case, the software project contains a number of
legacy components, for whom timing data should exist, but is also
mitigated by an assumption that the simulation can be refined as
soon as software testing begins, rather than waiting for its comple-
tion. The key is that the simulation provides an easy environment
for fast and efficient whole system analysis.

5.4.2 G22. The second step to understanding if the results repre-
sent the real system is to compare a set of the produced simulation
results against results obtained from the real system to ensure that
the results are both sufficiently similar. To do this, a subset of test rig
results should be used to repeat the distribution analysis conducted
to confirm claim G6 in Figure 2 in order to verify that the sub-set
of test rig results produce a similar distribution to the super-set of
simulation results. Comparison to a real system test campaign is,
at this point, left to future work.

5.5 G4 - Acceptability
The analysis process has so far shown how results can be produced
that explore the behaviour of a representative system. This has
been executed until sufficient coverage of the system has been
produced, resulting in an assessment of likelihood, which has finally
been verified against real system behaviour. However the only way
to assess whether the results indicate a low criticality task will
receive enough service is down to an engineering judgement. This
assessment must take into account the resilience, accuracy and
correctness of the wider system in the face of low criticality task
errors, as well as the individual temporal requirements of the low
criticality task.

It is important to remember that the system must be resilient to
robust task errors anyway, otherwise the task could not be treated
as a robust task. However, should the results prove unacceptable, the
next step would be to assess which tasks indicate overruns, altering
their CLO figures accordingly. The use of a scheduler simulator
facilitates an easy design-analyse-rework cycle that simply could
not be achieved with a full test campaign.

5.6 Related Work
Vestal [23] was one of the first publications to consider the schedula-
bility of a MCS. The work draws the comparison that the reliability
of the WCET figure used for each task is proportional to its crit-
icality. This is based on the observation that low DAL/criticality
tasks are not developed, or verified, to the same extent that high
DAL/criticality tasks are, and therefore the output WCET figures
cannot be expected to be as reliable.

Building off Vestal’s work, Baruah et al. [2] introduced Adaptive
Mixed Criticality (AMC). The AMC protocol de-schedules all low
criticality tasks if any high criticality task executes for longer than
its CLO . The original AMC algorithm was extended to delay the
system’s switch to the high criticality mode. The bailout protocol
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uses a ‘Bailout Fund’; a measure of howmuch slack time is currently
in the system [3]. Should the Bailout Fund fall below zero, then the
system reverts to a high criticality only mode until such time as
the system reaches idle, or the Bailout Fund increases above zero.
This protocol essentially delays, potentially suspending completely,
entry into the high criticality mode using the assumption that it is
unlikely that several tasks will overrun their CLO at the same time.

While low criticality tasks may have less stringent timing or
verification requirements, they are still important for the correct
operation of the system. Several papers have thus explored ap-
proaches to improve low criticality task support and offer more
realistic models where low criticality tasks are not abandoned [6].
In particular, the temporal properties of a low criticality tasks can
be altered, reducing its service, or execution time, without affecting
its overall requirements. Jan et al. [13] looked at applying the elastic
task model, originally proposed by Buttazzo et al. [8], to a MCS.
Rather than de-scheduling all tasks, this model instead extends
the period of low criticality tasks to reduce the utilisation on the
system. In contrast, the so-called imprecise mixed criticality model
[19] reduces low criticality execution budgets in order to improve
wider system performance. Finally, another approach reduces the
priority of low criticality tasks as required, effectively executing
low criticality tasks during periods of high system utilisation in
system slack time only [5]. However, this is wholly dependent on
the expressed requirements of the low criticality task being flexible
enough the support the proposed models.

Less stringent requirements were introduced to allow for a defi-
nition of the Quality of Service (QoS) offered to a task in the form
of (m −k)-firm deadlines [11], where a dynamic failure occurs only
if fewer thanm out of k consecutive jobs of a task fail to meet their
deadlines. The weakly hard real-time system model proposed by
Bernat et al. [4] generalises this model by allowing non-consecutive
deadline misses over a k jobs window. Typical Worst-Case Analy-
sis [12] provides for an evaluation of the QoS offered to a task by
bounding the number of deadline misses it can suffer in a weakly
hard real-time system.

The AMC analysis was extended in [9] to support weakly hard
real-time systems such that service is provided to low criticality
tasks in high criticality mode by allowing them to run a reduced
number of jobs in a given cycle. The analysis effectively determines
whether or not all low criticality tasks will at least meet a (m −
k)-firm deadline requirements. Medina et al [20] also considered
a (m − k)-firm model but to delay the need to switch to a high
criticality mode. No service is provided to low criticality tasks once
the switch occurs, and tasks may be skipped if their predecessor
exceeds its budget. They rely on a probabilistic process for assessing
the availability of low criticality tasks, assuming timing error rates
are known. While these approaches can provide some guarantee
on the minimum service offered to a task, neither can provide for
an evaluation of how often, and how long the system sustains a
high criticality mode under different strategies.

The resilient model [7] utilises graceful degradation to improve
low criticality task performance, by delaying the switch to the high
criticality mode and the loss of service. Similarly to the weakly hard

systems, robustness is supported at the task level where certain ‘ro-
bust’ tasks3 are capable of skipping individual jobs when requested.
In addition, the approach employs resilience at the system towards
supporting a certain number of timing failures. Service guarantees
are provided under each scheduler mode, based on the number
of supported timing failures, up to the point where low criticality
tasks have to be dropped.

In summary, MCS previous research has focused first on high
criticality task requirements, with the static analysis showing that
in the worst case low criticality tasks will receive no service. Meth-
ods such as elastic scheduling or weak hard real-time aimed to
improve low criticality tasks overall service, with graceful degrada-
tion aimed to provide some control on the occurrence of service loss
for low criticality tasks, or the reduction in service. Even though
the move to the high criticality mode may be delayed, it still may
occur at some point resulting in no or degraded service for all low
criticality tasks in the system. The methods offer many ways to
help improve or guarantee low criticality task performance under
adverse circumstances, but have not addressed how to assess this
performance and service in a meaningful way especially to support
certification, i.e. when a mode change may occur, or what impact
(by way of duration and frequency of loss of service) this may have
on the low criticality, and/or robust, tasks, when all tasks are not
continuously assumed to be running to their allocated budgets.

6 CONCLUSION
This paper has presented an approach to verifying the service af-
forded to low criticality tasks in a MCS. The approach presented
is agnostic to the choice of scheduling methodology and instead
focuses on a dynamic statistical process based on analysis of task
performance within a representative environment. The approach
was applied to a real aircraft engine control system. This allowed
a formerly low DAL, high criticality task to be re-designated as a
robust low DAL, low criticality task with its permissible utilisation
being increased by a factor of 60. The analysis aimed to provide a
confidence and understanding in the service afforded to the low
DAL task, which was found to indicate a job completion rate of
99.995% based on the execution of 1000 tests. This metric, as well
as the wider results, provide a system performance understanding
which should allow a system integrator to understand compliance
to the low DAL task requirements.

Even though the certification strategy, argument and evidence,
has been considered in the context of DO-178C by the authors and
internal safety experts, as part of our future work the approach
is to be discussed with appropriate certification authorities which
may lead to changes in the approach.
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