
Scheduling DAGs When Processor Assignments Are Specified
Sanjoy Baruah

∗

Washington University in Saint Louis

baruah@wustl.edu

ABSTRACT
The problem of scheduling a workload represented as a directed

acyclic graph (DAG) upon a dedicated multiprocessor platform

is considered, in which each individual vertex of the DAG is as-

signed to a specific processor and the entire DAG is required to

complete execution within a specified duration. A representation

of this scheduling problem as a zero-one integer linear program is

obtained.

KEYWORDS
Precedence-constrained jobs; Multiprocessor Scheduling; Restricted

Processor Assignment; Exact Schedulability Test; Integer Linear

Program

ACM Reference Format:
Sanjoy Baruah. 2020. Scheduling DAGs When Processor Assignments Are

Specified. In 28th International Conference on Real-Time Networks and Sys-
tems (RTNS 2020), June 9–10, 2020, Paris, France. ACM, New York, NY, USA,

6 pages. https://doi.org/10.1145/3394810.3394813

1 INTRODUCTION
At the previous edition of this conference in November 2019, Marko

Bertogna presented a keynote titled “AView on Future Challenges for
the Real-Time Community”, in which he made a strong and convinc-

ing case that future complex real-time application systems are likely

to be implemented upon heterogeneous multiprocessor platforms,

and that the workloads are likely to be characterized by complex

dependencies amongst pieces that are required to execute upon

different kinds of processors. He argued that real-time scheduling

theory needs to devote more attention to better understanding the

behavior of such complex multiprocessor implementations in order

that future safety-critical cyber-physical systems can be assured to

have predictable timing properties. For a start, he identified the fol-

lowing problem as one of the simplest abstract scheduling problems

that needs to be solved in order to be able to do scheduling-theoretic

analysis of such complex implementations:

∗
Funded in part by National Science Foundation Grants CNS-1814739 and CPS-1932530

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

RTNS 2020, June 9–10, 2020, Paris, France
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7593-1/20/06. . . $15.00

https://doi.org/10.1145/3394810.3394813

Given a directed acyclic graph (DAG) in which the vertices (each

of which is labeled with a worst-case execution time – WCET)

represent individual pieces of computation that are each assigned
to specific processors and the edges represent precedence con-

straints between these pieces of computation, determinewhether

the DAG can be scheduled in a manner that guarantees to meet

a specified overall end-to-end deadline.

This problem was convincingly motivated in Bertogna’s keynote

address: modern platforms come equipped with highly specialized

accelerators such as GPUs and TPUs (Tensor Processing Units),

upon which specific computations need to be executed. However,

even this very simple problem is known [6] to be computationally

intractable – NP-hard in the strong sense. As a consequence of this

complexity result, it is unlikely that efficient algorithms exist that

are able to solve this problem optimally; Bertogna described efforts

at solving it and its generalizations heuristically (see, e.g., [4]), but

lamented the lack of exact, even if inefficient, algorithms for the

problem against which the performance of the heuristics could

be compared experimentally for small problem instances in order

to characterize the effectiveness of the different heuristics. The

research reported in this paper represents an effort at obtaining

such an exact algorithm.

Contribution. We derive an algorithm for representing the sched-

uling problem discussed above as an integer linear program (ILP),

which can then be solved using standard ILP-solvers. In fact, it

turns out that all we need is a zero-one ILP — an ILP in which all

integer variables are restricted to take on the values zero or one

only; this is particularly welcome, since ILP-solvers are in general

able to solve zero-one ILPs far more efficiently than “regular” ILPs.

Representing our DAG scheduling problem as a zero-one ILP

turns out to be surprisingly non-trivial. While several standard

techniques have been developed within the traditional Operations

Research (OR) community for ILP-based representations of schedul-

ing problems (See, e.g, [2, Appendix C] for a text-book introduction

to some of these methods), these techniques, such as time-indexing
(in which integer variables are used to represent which job is exe-

cuting at each time-unit upon each processor) or ordering (in which

integer variables are used to represent the order in which the jobs

are to execute upon each processor), do not seem to be particularly

suitable for our problem. In particular, time-indexing does not scale

well since the number of integer variables needed is linear in the

duration of the schedule (i.e., the value of the end-to-end deadline),

while ordering is typically used for representing non-preemptive

scheduling problems and it is not obvious how this technique should

be extended to allow for preemption. The approach we have devel-

oped, and which is detailed in Section 3, requires us to combine

some of these traditional OR techniques with ideas (such as the

demand-bound function [3]) that are explicitly from the domain

of real-time scheduling theory: we consider this inter-disciplinary

https://doi.org/10.1145/3394810.3394813
https://doi.org/10.1145/3394810.3394813

RTNS 2020, June 9–10, 2020, Paris, France Sanjoy Baruah

v2

v1

v5

v4

v3 vi π (vi) c(vi)
v1 P1 2

v2 P1 2

v3 P1 3

v4 P2 2

v5 P2 2

D = 7

Figure 1: An example instance (that is discussed in Example 1)

integration of concepts from two domains to be one of the major

intellectual contributions of this work.

Organization. The remainder of this paper is organized in the

following manner. In Section 2 we formally describe the scheduling

problem that we seek to solve, and provide an illustrative example

that is used as a running example in the remainder of the paper. In

Section 3 we detail how this scheduling problem may be formulated

as a Zero-One Integer Linear Program. In Section 4 we briefly

discuss some related work, and then conclude in Section 5 with a

short discussion providing some context, and by identifying out

some possible directions for followup work.

2 PROBLEM STATEMENT
The problem that we are addressing in this paper may be described

in the following manner. We are given a (single) directed acyclic

graph G = (V ,E), in which the vertices represent sequential pieces

of computation (“jobs”) that need to be executed, and the directed

edges represent precedence constraints between jobs: for each edge

the job from which the edge is emanating must complete execution

before the job to which the edge leads may begin to execute. Each

job is assigned to a specific processor; i.e., each vertex vi ∈ V of

the DAG is characterized by a parameter π (vi), denoting the pro-
cessor upon which the job is required to execute. (The processors

are assumed to be preemptive — it is not required that the jobs

execute non-preemptively upon the processors to which they are

assigned.) Each vi ∈ V is also characterized by a parameter c(vi),
which denotes its WCET upon the processor π (vi). A deadline D
is specified for the DAG. We seek to synthesize a schedule for the

jobs in the DAG such that (i) each job vi gets to execute for a dura-

tion c(vi) upon the processor π (vi); (ii) the precedence constraints
represented by the edges in the DAG are respected; and (iii) all the

jobs in the DAG complete execution within an interval of duration

not exceeding D time units from the instant at which execution (of

any job) commences.

Example 1. Throughout this paper we will consider an example

instance in which the DAG depicted in Figure 1, comprising the

five jobs v1,v2,v3,v4 and v5 and three edges (v1,v3), (v2,v4), and
(v2,v5), is to be executed upon a 2-processor platform with an end-

to-end deadline D of 7 time units. The processor assignment and

the WCETs of the individual jobs are also depicted in the figure;

here the P1 and P2 denote the two processors. (The dashed lines in

the DAG represent the mapping of jobs to processors.)

□

Given a workload instance of the kind illustrated in Example 1

above, we seek to construct a schedule for the instance that guar-

antees to complete within the specified deadline. For the problem

instance of Example 1, observe that at time zero both jobv1 and job
v2 are ready for execution upon processor P1, while there are no
jobs ready for execution upon processor P2 at time zero. Figure 2

depicts the different schedules that are obtained for the instance of

Example 1 if job v1 is executed first or if job v2 is executed first: as

can be seen from Figure 2, executingv1 beforev2 results in a missed

deadline while executing v2 before v1 yields a correct schedule.

3 AN ILP REPRESENTATION
In this section we describe how the scheduling problem described in

Section 2 above may be represented as an ILP. As mentioned in Sec-

tion 1, representing our schedulability problem as a zero-one Integer

Linear Program turns out to be surprisingly non-trivial – standard

OR techniques do not seem to be directly applicable. The approach

that we have developed, and that we describe in the remainder of

this section, integrates some traditional OR techniques with some

results from real-time scheduling regarding the relationship be-

tween the demand bound function [3] of a collection of independent

real-time jobs and their feasibility upon a preemptive uniprocessor

platform. In order to be able to apply the demand-bound function

concept to our multiprocessor scheduling problem, our approach

requires us to consider the jobs that have been assigned to each

processor separately, and write constraints in which variables repre-

sent the instants at which each job begins and completes execution

upon the processor to which it is assigned in any feasible schedule.

Mutual dependence amongst the schedules upon different proces-

sors arises because of precedence constraints between jobs that

must execute upon different processors: such dependencies are rep-

resented in our ILP formulation by adding constraints that enforce

the requirement that a predecessor job must complete execution

before its successor may begin to execute.

In somewhat more detail, for each node vi ∈ V of the DAG we

define non-negative real-valued variables si and fi to represent the
instants at which the job represented by node vi begins and com-

pletes execution upon the processor to which it has been assigned.
1

1
We reiterate that the processors are assumed to be preemptive: it is not required that

the job vi execute throughout the duration [si , fi]. Rather, si denotes the first instant
at which the job begins to execute, and fi , the last instant at which it does so.

Scheduling DAGs When Processor Assignments Are Specified RTNS 2020, June 9–10, 2020, Paris, France

P2

P1 v1 (2) v2 (2) v3 (3)

v4 (2) v5 (2)

deadline

v2 (2) v1 (2) v3 (3)

v4 (2) v5 (2)

deadline

Figure 2: Gantt chart of possible schedules for the example instance of Example 1. Each “box” is labeled with the name of the
job whose execution it represents; the maximum duration of this execution is written within parentheses. The dotted lines
depict precedences.
The schedule to the left executesv1 before executingv2, while the one to the right executesv2 before executingv1. The schedule
to the left fails to meet the deadline of 7, while the schedule to the right does meet the deadline (and is hence the correct one).

We represent information regarding the jobs’ WCETs by adding a

constraint

fi ≥ si + c(vi) (1)

for each vertex vi . The requirement that all jobs complete by the

specified deadline D is encoded in a constraint

fi ≤ D (2)

for each vi . Additionally, for each directed edge (vi ,vj) ∈ E of the

DAG, we add the constraint

fi ≤ sj (3)

to encode the requirement that the job from which an edge is

emanating must complete execution before the job to which the

edge leads may begin to execute.

Example 2. We illustrate the steps above for the example in-

stance of Example 1.

• Since there are five jobs v1,v2,v3,v4, and v5, we have the ten
variables si , fi for i = 1, 2, . . . , 5.

• We have the five constraints

si + c(vi) ≤ fi

for i = 1, 2, 3, 4, and 5, to represent the jobs’ WCETs. E.g, for

i ← 3 this constraint, would be written as

s3 + 3 ≤ f3

since c(v3) = 3.

• We represent the requirement that all jobs meet the deadline by

adding the five constraints

fi ≤ 7

for i = 1, 2, 3, 4, and 5.

• We have three additional constraints, representing the three

edges (precedence constraints) in the graph:

f1 ≤ s3

f2 ≤ s4

and f2 ≤ s5

□

Considering an individual processor. Once the variables have
been defined as described above, and precedence relationships repre-

sented via the Constraints 3, we consider each processor separately.

That is, we individually consider, for each processor, all the jobs that

have been assigned to that processor — we will write constraints

for representing feasibility upon the processor under consideration.

Recall that variables si and fi represent the instants at which the job
vi begins and completes execution respectively; we can therefore

characterize the workload on the processor as comprising a collec-

tion of independent jobs
2
, one per job vi assigned to this processor,

that is released at time-instant si , has a WCET equal to c(vi), and
has a deadline at time-instant fi . Under the demand-bound function
characterization [3] of feasibility upon a preemptive uniprocessor

platform, a necessary and sufficient condition for this collection

of jobs to be feasible is that for all intervals [t1, t2] such that t1
corresponds to the release time of some job and t2 corresponds to
the deadline of some job, the cumulative execution requirement of

all the jobs with release time ≥ t1 and deadline ≤ t2 not exceed the

interval duration (t2 − t1). Accordingly for each 3-tuple vi ,vj , and
vk of jobs that have been assigned to the processor under consider-

ation, we define a non-negative real-valued variable ci jk with the

intended interpretation that

ci jk ≥

{
c(vk), if (si ≤ sk)

∧
(fk ≤ fj)

0, otherwise

(4)

That is, ci jk is ≥ the WCET of vk if vk is scheduled entirely within

the interval [si , fj], and ≥ zero otherwise. Informally, ci jk is in-

tended to represent (an upper bound on) the amount that job vk
contributes to the demand bound over the interval [si , fj], provided
that si < fj and the interval is therefore non-degenerate. (Of course
Expression 4 is not in the form of a linear constraint; we will de-

scribe later how this intended interpretation may be specified via

linear constraints. We will see that doing so requires us to make

use of zero-one integer variables.)

Example 3. Let us revisit the example instance of Example 1.

We consider separately the jobs assigned to the first and the second

processor.

2
We emphasize that these jobs may be considered as being independent: precedence
constraints between them are separately represented by constraints of the form given

in Expression 3 above.

RTNS 2020, June 9–10, 2020, Paris, France Sanjoy Baruah

• For the first processor, we consider the jobs v1,v2, and v3 that
are assigned to it. We will therefore define 3×3×3 = 27 variables
ci jk for (i, j,k) ∈ {1, 2, 3} × {1, 2, 3} × {1, 2, 3}.
• Similarly for the second processor, we consider only the jobs

v4 and v5. Hence there will be 2 × 2 × 2 = 8 variables ci jk for

(i, j,k) ∈ {4, 5} × {4, 5} × {4, 5}.

□

The demand bound function characterization of preemptive unipro-

cessor feasibility can be stated in terms of these ci jk variables in

the following manner. For all intervals [si , fj] such that both job

vi and job vj are assigned to the processor under consideration, it

must be the case that ∑
k

ci jk ≤ (fj − si) (5)

We point out that in fact, under the demand bound function char-

acterization of preemptive uniprocessor feasibility, only intervals

[si , fj] for which the entire scheduling windows [si , fi] and [sj , fj]
of both the jobs vi and vj fall within the interval [si , fj] need to be

checked for Condition 5 — this follows from the observation that

if either of the jobs does not fall within this interval, then that job

does not contribute to the demand over the interval.

Introducing zero-one integer variables. All the variables intro-
duced thus far — the start-time si and finish-time fi for each job

vi , and the ci jk variables for each 3-tuple of jobs vi ,vj , and vk that

are assigned to the same processor with the intended interpreta-

tion of Expression 4 — are allowed to take on arbitrary real values.

We now introduce some additional variables that are restricted to

taking on the (integer) values zero or one only. These additional

zero-one integer variables enable us to write constraints forcing

the ci jk variables to take on their intended meaning (as defined by

Expression 4), and to express Expression 5 as a linear constraint.
3

The zero-one integer variables that we introduce are as follows.

For each pair of jobs vi and vj that are assigned to the same pro-

cessor, we have two variables, xi j and yi j , with the intended inter-

pretations that

xi j =

{
1, if si ≤ sj
0, otherwise

and

yi j =

{
1, if fi ≤ fj
0, otherwise

That is, these zero-one integer variables specify the ordering of the

start-times and the finish-times of the jobs: assigning xi j the value
0 is equivalent to asserting that si occurs no later than sj while
assigning xi j its other possible value, 1, is equivalent to asserting

that si occurs after sj (and similarly for the value assigned to yi j
establishing the relative ordering of fi and fj). This intended inter-

pretation is achieved by means of a fairly standard method from

3
Note that although Expression 5 appears to already be in linear-constraint form, it

is not quite so since it is only defined for some values of i and j – those for which

si ≤ fj . But since the si and the fj values are variables, we cannot a priori determine

for which values of i and j constraints of the form Expression 5 need to be written —

this will be determined by the values that get assigned to the si ’s and the fj ’s in any

solution to the ILP that we are constructing.

Operations Research, of adding the following constraints; here,M
denotes a large positive constant.

si ≥ sj −M · xi j (6)

sj ≥ si −M · (1 − xi j)

fi ≥ fj −M · yi j

fj ≥ fi −M · (1 − yi j)

We can see why these constraints achieve the intended interpreta-

tion by considering the first two inequalities of Inequalities 6:

• If xi j = 1, then the first inequality requires that si ≥ sj −M ; since

M is assumed to be a very large positive integer, this inequality

does not constrain the possible value that may be assigned to si .
However, the second inequality requires that sj ≥ si −M · (1− 1),
i.e., sj ≥ si , as intended.
• If xi j = 0, then the first inequality requires that si ≥ sj −M · 0,
i.e., si ≥ sj , as intended. The second inequality requires that

sj ≥ si −M · (1−0), i.e., sj ≥ si −M (and sinceM is assumed to be

a very large positive integer, this inequality does not constrain

the possible value that may be assigned to sj).

The second two inequalities of Inequalities 6 similarly achieve the

intended interpretation regarding the relative ordering of fi and fj .

Example 4. Let us revisit the example instance of Example 1, and

consider the first processor (consideration of the second processor

is similar). For the three jobs on the first processor, a total of 3 ×

2 = 6 pairs (i, j) need to be defined and constrained as specified

in Expression 6. As an optimization, we can exploit symmetry

and reduce the number of constraints that need to be written by

observing that xi j = 1 − x ji (and analogously for the yi j ’s). Hence,
the following constraints are the only ones needed:

• For each (i, j) ∈ {(1, 2), (1, 3), (2, 3)}

si ≥ sj −M · xi j

sj ≥ si −M · (1 − xi j)

fi ≥ fj −M · yi j

fj ≥ fi −M · (1 − yi j)

• For each (i, j) ∈ {(2, 1), (3, 1), (3, 2)}

xi j = 1 − x ji

yi j = 1 − yji

□

We may use these zero-one variables that we have defined to

achieve the intended interpretation for the ci jk variables as speci-

fied in Expression 4, by writing the following constraint for each

3-tuple (i, j,k):

ci jk ≥ c(vk) −M · (2 − xik − yk j) (7)

It may be verified that this constraint requires ci jk to be ≥ c(vk) if
(si ≤ sk) and (fk ≤ fj); otherwise, it does not constrain the value

of ci jk at all.

Example 5. For the first processor of the example instance of

Example 1, the 3-tuple (i, j,k) may take on any value in {1, 2, 3} ×

Scheduling DAGs When Processor Assignments Are Specified RTNS 2020, June 9–10, 2020, Paris, France

{1, 2, 3} × {1, 2, 3}. For each such (i, j,k), we therefore add the con-

straint

ci jk ≥ c(vk) −M · (2 − xik − yk j)

For some of the ci jk variables, it is possible to determine the actual

values that they are required to take in any feasible solution. Such

variables may have their values initialized in the ILP as an additional

optimization — in general, the more constrained the optimization

problem the quicker an ILP solver is able to find a solution. For

instance, it is evident that for any i the variable ciii takes on the

value c(vi) since si ≤ si and fi ≤ fi are trivially true. Some other

such initializations are possible; some of the obvious ones for our

example are listed below.

c111 = c(v1)

c222 = c(v2)

c333 = c(v3)

c121 = c(v1)

c122 = c(v2)

c
21k = 0 for k ∈ {1, 2, 3}

(We point out that adding these initializations only improves ef-

ficiency – they have no impact whatsoever on feasibility. Hence

adding them is optional.) □

It remains to add constraints that characterize preemptive unipro-

cessor feasibility upon each processor. As discussed above, this is

equivalent to requiring that Expression 5 be satisfied for all inter-

vals [si , fj] such that both job vi and job vj are assigned to the

same processor, and the entire scheduling windows of both jobs vi
and vj fall within the interval. For such [si , fj], Constraint 5 can be

represented as follows:∑
k

ci jk ≤ (fj − si) +M · (2 − xi j − yi j) (8)

were the index k ranges over all jobs vk that are assigned to the

same processor as vi and vj .

Example 6. For the first processor of the example instance of

Example 1, (i, j) may take on any value in {1, 2, 3} × {1, 2, 3}. For

each such (i, j), we add the constraint∑
k

ci jk ≤ (fj − si) +M · (2 − xi j − yi j)

As in Example 5, some optional simplification is possible that im-

proves efficiency without impacting feasibility. For example, we

may safely delete the constraint corresponding to (i, j) ← (2, 1):∑
k

c
21k ≤ (f1 − s2) +M · (2 − x21 − y21)

(The reason we are able to delete this constraint is because of the

precedence relationship from v1 to v2 guarantees that f1 ≤ s2 and
hence both x21 and y21 will equal zero, and this constraint will

become degenerate.) □

Putting the pieces together. The various steps discussed above

for representing an instance of our DAG scheduling problem as a

zero-one integer linear program are collected together in Figure 3.

(Only the essential steps are enumerated; the optional optimizations

introduced in Examples 5 and 6 are not included.) Once the ILP has

Given the DAG G = (V ,E) with the processor assignment π (·)
and WCETs c(·), obtain a zero-one integer linear program as

follows:

(1) For each job vi ∈ V
• Introduce the non-negative real-valued variables si and

fi
• Add the constraints

fi ≥ si + c(vi)

and fi ≤ D

(2) For each edge (vi ,vj) ∈ E add the constraint

fi ≤ sj

(3) For each (i, j) such that π (vi) = π (vj)
• Introduce the zero-one integer variables xi j and yi j
• Add the four constraints

si ≥ sj −M · xi j

sj ≥ si −M · (1 − xi j)

fi ≥ fj −M · yi j

fj ≥ fi −M · (1 − yi j)

whereM is a large positive integer.

(4) For each 3-tuple (i, j,k) such that π (vi) = π (vj) = π (vk)
• Introduce the non-negative real-valued variable ci jk
• Add the constraint

ci jk ≥ c(vk) −M · (2 − xik − yk j)

(5) For each (i, j) such that π (vi) = π (vj), add the constraint∑
k

ci jk ≤ (fj − si) +M · (2 − xi j − yi j)

Figure 3: Obtaining an ILP Representation of the Schedula-
bility of a DAG

been formulated, it is handed off to an ILP-solver which determines

whether it is feasible and if so, assigns appropriate values to the

variables in the ILP. If a solution is found, the variables of interest

to us are the si and fi values — the instant at which each job begins

and completes execution upon the processor to which it has been

assigned. We will use these values to construct the actual schedule

upon the individual processors, by (i) modeling each jobvi as being
released at time-instant si , having a WCET equal to c(vi), and a

deadline at time-instant fi ; and (ii) constructing the EDF-generated
schedule of these jobs.

How large is this ILP? For an instance of our scheduling problem

comprising n jobs, it is evident that

(1) The number of si and fi variables introduced in Step 1 of Fig-

ure 3 is equal to 2n, while the number of constraints introduced

in this step is also equal to 2n.
(2) The number of constraints introduced in Step 2 of Figure 3 is

equal to |E |, the number of edges in the DAG.

(3) The number of zero-one variables xi j andyi j that are introduced

in Step 3 of Figure 3 is at most 2n2, this value being reached

if all the jobs are assigned to the same processor. The number

RTNS 2020, June 9–10, 2020, Paris, France Sanjoy Baruah

of constraints introduced in this step is twice the number of

variables that are introduced.

(4) The number of ci jk variables introduced in Step 4 of Figure 3 is

at most n3, this value being reached if all the jobs are assigned

to the same processor. The number of constraints introduced in

this step is equal to the number of variables that are introduced.

(5) Finally, the number of constraints introduced in Step 5 of Fig-

ure 3 is at most n2.

We thus see that we have an ILP with O(n3) real-valued variables,

O(n2) zero-one integer variables, andO(n3) constraints. That allows
us to conclude that the ILP is of size polynomial in the number of
jobs.

An additional observation. We mention in passing that the tech-

nique we derived here is easily modified to deal with a generaliza-

tion of the considered problem, in which each individual job may

have its own arrival-time and deadline in addition to precedence

constraints and the overall deadline.

Implementation experience. We have implemented a Python

program that reads in problem instances specified as described

in Section 2, constructs the ILP representation, and solves this

ILP using the Gurobi
4
solver, Version 7.0.2 (mac65, Python). Our

primary objective in doing this implementation was to gather some

confidence that our ILP formulation is correct; to this end we were

able to verify that it does indeed obtain the correct solution for

several simple examples (such as the one in Example 1). We plan

to submit our implementation code for artefact evaluation if this

paper is accepted, and to share it with other interested researchers.

Whilewe did not conduct extensive experimental evaluations – such

evaluation, on real workloads occurring in actual CPS applications,

is planned as future work – we did observe that the Gurobi ILP

solver appears to be a very powerful one that incorporates several

clever heuristics for optimizing the process of finding a solution;

for instance, it obtained a solution to the DAG of Example 1 in less

than 0.1 seconds on a MacBook Pro (2.3 GHz Intel Core i5; 16GB

Memory). Even on somewhat larger instances – the largest one we

tested on had 50 jobs and 50 precedence constraints – the running

time never exceeded 1 second.

4 RELATEDWORK
We were not able to find any prior work on designing exact algo-

rithms for solving our scheduling algorithm. The only somewhat

related algorithm that we found is theDue-Date Modification (DDM)

algorithm [1]. Under DDM, the deadline of each job is modified

to be the smaller of its current deadline and the latest start time

(deadline minus WCET) of its successor jobs, and jobs are priori-

tized for execution according to their modified deadlines. Example 1

(Section 2) bears witness to the fact that DDM is not an optimal

algorithm: since the modified deadline of v1 is 7 − 3 = 4 while

the modified deadline of v2 is 7 − 2 = 5, DDM would prioritize v1
over v2 and thereby yield the left (incorrect) schedule depicted in

Figure 2 rather than the right, correct, one.

4
https://www.gurobi.com

5 CONTEXT AND CONCLUSIONS
Marko Bertogna, in his keynote address at RTNS 2019, had posed

an agenda for future research on real-time scheduling that is mo-

tivated by the issues and problems he has faced in building an

extremely complex safety-critical cyber-physical system – a self-

driving car. In this paper, we describe our efforts at addressing

one of the simplest problems in his wish-list of problems: develop-

ing an exact algorithm for synthesizing schedules, where possible,

for precedence-constrained collections of jobs each of which is

restricted to executing upon a specified processor of a multiproces-

sor platform. Solving even this simple problem turned out to be

surprisingly challenging: it required us to draw upon, and integrate,

disparate ideas from Operations Research and real-time scheduling

theory in order to synthesize the ILP, and then fall back on results

from real-time scheduling theory – the optimality of preemptive

uniprocessor EDF – in order to synthesize the actual schedule using

the individual jobs’ start-times and completion times as determined

by the solution to the ILP. We emphasize that the integration of

ordering variables – a fairly standard idea in the OR literature –

with demand-bound function characterization of preemptive unipro-

cessor feasibility is, to our knowledge, a novel contribution of this

work. We find this idea to be powerful and exciting, and are eager

to explore further applications of it to obtain ILP representations

of other real-time scheduling problems.

Our agenda for future work includes the following:

• As mentioned earlier, we have implemented our algorithm and

have performed some preliminary experiments to validate its

correctness, but have not yet done extensive experimental eval-

uation. We plan to do such evaluation in the near future, using

real workloads obtained from actual CPS applications (such as

Bertogna’s), in order to obtain a better understanding of the

scalability of our approach.

• We will seek to apply the lessons and insights we have obtained

here to derive ILP-based exact schedulability tests for workloads

that are expressed using generalizations to the model assumed in

this paper. One particular generalization of interest is this: rather

than restricting each job to execute upon one specific processor,

what if they were instead restricted to executing upon a subset of

the available processors? (We point out that this is not likely to

be a straightforward extension of our current approach since the

demand-bound function abstraction is no longer applicable, and

some other ideas from real-time scheduling theory are needed.)

REFERENCES
[1] Kenneth Baker and J. Bertrand. 1982. A Dynamic Priority Rule for Scheduling

against Due-Dates. Journal of Operations Management 3 (1982), 37–42. Issue 3.
[2] Kenneth R. Baker and Dan Trietsch. 2009. Principles of Sequencing and Scheduling.

Wiley Publishing.

[3] S. Baruah, A. Mok, and L. Rosier. 1990. Preemptively Scheduling Hard-Real-Time

Sporadic Tasks on One Processor. In Proceedings of the 11th Real-Time Systems
Symposium. IEEE Computer Society Press, Orlando, Florida, 182–190.

[4] Slim Ben-Amor, Liliana Cucu-Grosjean, and Dorin Maxim. 2019. Worst-case

response time analysis for partitioned fixed-priority DAG tasks on identical pro-

cessors. In 24th IEEE International Conference on Emerging Technologies and Factory
Automation, ETFA 2019, Zaragoza, Spain, September 10-13, 2019. IEEE, 1423–1426.
https://doi.org/10.1109/ETFA.2019.8869147

[5] M. Garey and D. Johnson. 1979. Computers and Intractability : A Guide to the
Theory of NP-Completeness. W. H. Freeman and company, NY.

[6] Klaus Jansen. 1994. Analysis of scheduling problems with typed task systems.

Discrete Applied Mathematics 52, 3 (1994), 223 – 232.

https://www.gurobi.com
https://doi.org/10.1109/ETFA.2019.8869147

	Abstract
	1 Introduction
	2 Problem Statement
	3 An ILP Representation
	4 Related Work
	5 Context and Conclusions
	References

