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ABSTRACT
Elastic scheduling allows for online adaptation of real-time tasks’

utilizations (via manipulation of each task’s computational work-

load or period) in order to maintain system schedulability in case

the utilization demand of one or more tasks changes. This is done

currently by assigning each task a utilization (and therefore period

or workload) from within a continuous range of acceptable values.

While this works well for anytime tasks whose quality of service

improves with duration or for tasks that can run at any rate within

a given range, many computationally-elastic tasks have a specific

workload for each distinct mode of operation and therefore cannot

perform arbitrary amounts of work. Similarly, some period-elastic

tasks must run at specific (e.g. harmonic) rates. Therefore, a discrete

set of candidate utilizations per task must be accommodated in such

cases.

This paper provides a new elastic task model in which each task

has a discrete set of possible utilizations (instead of a continuous

range). This allows users to specify only relevant candidate periods

and workloads for each task. The discrete nature of this model also

allows each task to modify its workload and/or its period when

changing its mode of operation, instead of adapting in only one

dimension of task utilization. Elastic tasks thus can exploit both

period elasticity and computational elasticity. This greatly increases

both the diversity of adaptations available to each task and the kinds

of real-time tasks relevant to elastic scheduling.
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We use the real-world example of real-time hybrid simulation as

a motivating application domain with discretely computationally-

elastic, period-elastic, and combined-elastic parallel real-time tasks

under the Federated Scheduling paradigm. We prove the scheduling

of these tasks to be NP-hard, and provide a pseudo-polynomial time

scheduling algorithm. We then use this scheduling algorithm to

implement the first virtual real-time hybrid simulation experiment

in which discrete elastic adaptation of platform resource utiliza-

tions enables adaptive switching between controllers with differing

computational demands. We also study the effects of scheduling

tasks with discretized vs. continuous candidate utilizations.
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1 INTRODUCTION
The elastic task model, first introduced by Buttazzo et al. [3],

allows for online modification of task periods to maintain schedu-

lability of adaptive period-elastic tasks without the pessimism

required for a static schedule accommodating the worst-case be-

havior of the most utilization-intensive mode of operation. That

model was later extended to include multiprocessor scheduling,

tasks with internal parallelism, and tasks that instead can adapt

their computational loads (computational elasticity). [16–18]

https://doi.org/10.1145/3394810.3394824
https://doi.org/10.1145/3394810.3394824
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In this paper we provide a new elastic task model that expands

the state of the art by introducing discrete elastic scheduling in

which each task’s assigned utilization is obtained from a finite set of

candidate tuples, each of which has an associated period and work-

load. From one tuple to the next, a task may change its period, its

computational workload, or both. The discrete elastic model more

accurately describes tasks that have distinct modes of operation,

such as a robot with multiple available planning algorithms with

varying degrees of computational demand, or a control application

that may get better results from running at a higher frequency

but needs to maintain harmonic rates with respect to other tasks

in the system. Unlike the continuous elastic model, the discrete

model allows adaptation of both computational demand and period

together, at once (combined elasticity).
We use the real-world application domain of real-time hy-

brid simulation (RTHS), used by earthquake engineers to un-

derstand structural behavior with high fidelity at realistic time-

scales [9, 10, 19], as a motivating example for discrete elastic sched-

uling. In RTHS a well-understood portion of a structure is simulated

while a portion to be tested or validated is physically built. The

combined structure is then connected via sensors and actuators and

subjected to external stimuli (such as earthquake ground motions)

at fine-grained time scales in order to examine how the relevant por-

tions behave. Different portions of the structure can be simulated at

different rates to yield resources to portions of special interest (e.g.,

those near the physical specimen) that require higher resource uti-

lization. However, to date, resources have been statically assigned

in RTHS experiments: each substructure runs at a fixed rate with

a fixed set of computational resources, and changes to the system

can only be made between successive runs. We exploit discrete

elastic scheduling to conduct the first (virtual) real-time hybrid

simulation experiment in which resource adaptation enables adap-

tive switching between controllers with different computational

demands. In this experiment, the control algorithm that determines

the response to the system’s behavior is able to execute in multi-

ple modes of operation, i.e., using a non-linear Kalman filter vs. a

more computationally-expensive particle filter. Other tasks in the

system (which must run at rates harmonic with that of the control

algorithm) are similarly able to adapt their periods, computational

loads, or both, accordingly.

This paper is structured as follows. Section 2 provides relevant

background information. Section 3 presents the discrete elastic
scheduling system model, including a discussion of the impli-

cations of combined elasticity, which allows for a task to adapt

both its computational workload and its period. In Section 3 we

also prove the scheduling of parallel tasks using this model under

the Federated Scheduling paradigm to be (weakly) NP-hard via a

reduction from the Knapsack Problem. We then present a pseudo-

polynomial time dynamic-programming algorithm (obtained by

reducing our scheduling problem to an instance of the Multiple

Choice Knapsack Problem) that can efficiently create an optimal

schedule for such tasks. Section 4 describes our adaptive virtual

RTHS experiment. Section 5 evaluates the level of pessimism when

using discrete elastic scheduling vs. idealized (but often practically

unsuitable) continuous elastic scheduling. Section 6 concludes and

describes future directions for extending this work.

Although this paper focuses on the discrete elastic scheduling of

parallel real-time tasks under federated scheduling, we point out

that many of the concepts introduced here are also applicable to

sequential tasks; hence, our proposed model should be considered

an extension of the elastic task models for sequential and parallel

workloads.

2 BACKGROUND
In this paper we present the novel concept of discrete elastic schedul-
ing, focusing on discretely elastic parallel real-time tasks under the

Federated Scheduling paradigm. This section provides background

information about elastic scheduling and the example application

domain that motivates our approach and is used to evaluate it:

real-time hybrid simulation (RTHS).

2.1 Elastic Scheduling
The (continuous) elastic task model was first proposed by But-

tazzo et al. [3] for scheduling adaptive sequential tasks on unipro-

cessor systems via period manipulation. The approach is based on a

sophisticated analogy between (1) uniprocessor tasks maintaining a

collective utilization no greater than a desired utilizationUd (e.g. for

schedulability, Ud = 1.0 for preemptive EDF scheduling) and (2) a

set of springs laid end-to-end being compressed by a collective force

until their combined length is at or below a desiredmaximum length.

Just as springs have different maximum and minimum lengths and

resistances to compression, elastic tasks have different minimum

and maximum period values (and therefore different maximum and

minimum utilizations) and resistances to changing their periods [3].

Each task is formally represented as τi =
〈
Ci ,T

(max )
i ,T

(min)
i , Ei

〉
where Ci represents the task’s constant worst-case execution time
(WCET) and the closed range [T

(min)
i ,T

(max )
i ] spans all acceptable

period values for a task, where a lower period (and therefore higher

utilization) is always preferred. The current period is denoted Ti .
A task’s elasticity coefficient Ei is a measure of how relatively easy

or difficult it is to change a task’s period, analogous to a spring’s

stiffness as a measure of its resistance to changing its length: a

higher elasticity coefficient indicates a more elastic task.

Buttazzo et al. present an efficient (Θ(n2)) iterative scheduling

algorithm [3] that increases each task’s period Ti from T
(min)
i pro-

portional to its elasticity coefficient Ei (to a maximum of T
(max )
i ).

Recall that a task’s utilization Ui =
Ci
Ti . With a constant Ci , the

values T
(min)
i and T

(max )
i therefore can be expressed equivalently

as maximum and minimum utilizationsU
(max )
i andU

(min)
i , respec-

tively. The algorithm ends either when tasks successfully have been

assigned periods such that their combined utilization is less than

Ud , or when each task’s period has been stretched toT
(max )
i (giving

U
(min)
i ) and their combinedminimumutilization is still greater than

Ud , in which case the taskset is declared unschedulable. Chantem

et al. [6, 7] later proved this algorithm to be equivalent to solving

the following optimization problem:

minimize
n∑
i=1

1

Ei
(U
(max )
i −Ui )

2
(1)
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such that

U
(min)
i ≤ Ui ≤ U

(max )
i for all τi

and

n∑
i=1

Ui ≤ Ud .

Uniprocessor elastic scheduling has since been expanded to in-

clude constrained deadlines [6], resource sharing [4] and unknown

computational loads [5].

The Federated Scheduling paradigm was first introduced by

Li et al. [15] to schedule sporadic parallel tasks represented as di-
rected acyclic graphs (DAGs), each with a utilizationUi ≥ 1 that

demands more than a single processor. These high-utilization
tasks are each given exclusive use ofmi processors according to

the equation

mi =

⌈
Ci − Li
Ti − Li

⌉
(2)

In Equation 2, Ci is the task’s cumulative work, or the sum of the

worst-case execution times of all nodes in its DAG of precedence-

constrained sub-tasks. This is equivalent to the task’s worst-case

execution time if run on a single processor. Similarly Li is its span
(or critical-path length), the longest worst-case execution time of

any sequential chain of nodes in the DAG. This forms a lower bound

on the task’s execution time on a theoretically infinite number of

processors. Ti is each task’s minimum inter-arrival time or pe-
riod, which also serves as its implicit deadline. It was proved [15]
that a taskset composed of high utilization tasks is schedulable if

the required number of processors is less than or equal tom, the

number of processors available to the system. Low-utilization
tasks with utilizationUi < 1 are treated as sequential tasks under

Federated Scheduling and are scheduled on the pool of remaining

processors.

Later work by Orr et al. [17, 18] extended the elastic task model

to include parallel real-time DAG tasks under Federated Scheduling.

To keep parallel elastic scheduling as semantically equivalent to

Buttazzo’s original model as possible, the authors present an optimal

scheduling algorithm that directly solves a minimization problem

similar to that given in Equation 1:

minimize
n∑
i=1

1

Ei
(U
(max )
i −Ui )

2
(3)

such that:

U
(min)
i ≤ Ui ≤ U

(max )
i for all τi

and

n∑
i=1

mi ≤ m

Each task is initially given its minimum number of processors,

and the remaining CPUs are allocated in a manner that minimizes

the sum in Equation 3. That work also expanded the concept of

task elasticity. Noting that task utilization is dependent on both
computational load and period, it allows for tasks to have a range of
acceptable utilizations [U

(min)
i ,U

(max )
i ] that can be either a range

of acceptable periods [T
(min)
i ,T

(max )
i ] as in Buttazzo’s model or a

range of acceptable computational loads [C
(min)
i ,C

(max )
i ]. Tasks

that adapt their periods are called period-elastic tasks, while tasks
that adapt their workloads are computationally-elastic tasks.

This paper extends that elastic task model, (1) allowing for the more

realistic scenario of discrete candidate utilization values instead of

continuous ranges; and in doing so also (2) allowing for combined-
elastic tasks to adapt both their periods and computational loads

at once.

2.2 Motivating Application Domain
Although the adaptive capabilities and discrete workloads enabled

by discrete elastic scheduling are relevant to a variety of real-

time applications, we focus here on real-time hybrid simulation
(RTHS), which is used by structural engineers to study the dynamic

behavior of a structural specimen under loading that potentially

results in unknown and highly nonlinear behavior. Traditionally, a

new structural concept or a new vibration mitigation device is vali-

dated in one of two ways: a physical structure is built and subjected

to tests, or a numerical model is tested via computer simulations.

However, building physical structures, even if not at full scale, and

subjecting them to full physical tests, though robust, can be prohib-

itively expensive in terms of money and time. On the other hand,

running computer simulations such as finite element models is less

expensive but may not fully capture nuances of a physical structure:

for instance, accurate numerical models may not exist for some

types of damage that a physical structure could sustain.

Realy-time hybrid simulation (RTHS) [9, 10] combines the

strengths of purely physical and purely numerical approaches.

A portion of a structure is physically built to be studied, while

the remainder is simulated numerically. The complete structure

(composed of both physical and simulated components) is then dy-

namically subjected to external loads (such as earthquake ground

motions) during experimentation, resulting in a feedback control

system with numerical models that must be executed on-line. At

fine-grained time scales with real-time requirements, the physical

components are driven by actuators, and their displacement, veloc-

ity, and acceleration are measured by sensors and input back into

the computational subsystem. The resulting computation in turn

determines the forces the actuators should apply to the physical

substructure in the next time step. Awidely-used platform for RTHS

is MathWorks’s Speedgoat/XPC Target that runs in coordination

with real-time Simulink. However, such a system is neither parallel

nor adaptive, which limits the kinds of experiments that it can run.

The potential for extensive damage to equipment, test specimens,

or even people as a result of unintended actuation (e.g., in the

case of an unstable control algorithm) necessitates that before full

RTHS experimentation can be done safely, as much validation of

the proper system setup as possible must be performed. One such

validation that always precedes a RTHS is a virtual RTHS in which
the physical component of RTHS is replaced by a simulation, often

on an entirely different machine and using the same interface as the

physical component. Although the simulated “physical component”

in a virtual RTHS cannot fully capture the dynamics of the actual

physical specimen under examination in the full RTHS (indeed the

partially unknown dynamics of the physical specimen may be the

very reason for running the RTHS experiment), a virtual RTHS

can effectively validate control algorithms and numerical models

that will be used in RTHS experiments. As such, in this paper we

present an adaptive virtual RTHS using discrete elastic scheduling
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(in Section 4) as a crucial first step towards a full adaptive RTHS

using our new discrete elastic scheduling model.

Multi-time-stepping (MTS) decomposes an RTHS into subsys-

tems (with individual tasks) and runs each task at its own harmonic

periodic rate, where for any two subsystems, the periodic rate of

one has a time-step ratio of x times that of the other. Data are

exchanged at each iteration of the slower of the tasks to ensure

subsystems have a consistent view of the overall system. Multi-

time-stepping allows for more precise control over individual sub-

systems’ periods (e.g., one subsystem runs relatively quickly in

order to read a vital physical sensor more frequently or another

subsystem runs more slowly in order to process more simulation

data in each period) than if the entire system were running at a

single periodic rate. However, multi-time-stepping alone does not

allow for fine-grained control over tasks’ computational loads. Nor

does it allow for run-time re-allocation of resources (e.g., which

would allow for a subsystem’s runtime behavior to change with its

workload) [2].

The Cybermech platform was developed by Ferry et al. [9] to

run parallel RTHS experiments. Although Cybermech supports

multi-time-stepping, each subsystem only runs at a fixed periodic

rate [2], and thus is only applicable to systems whose control model

is linear. In contrast, the discrete elastic scheduling approach intro-

duced in this paper allows for dynamic re-allocation of individual

subsystems’ periodic rates and/or computational resources to ac-

commodate linear and potentially non-linear behavior which can

occur with new experimental devices (e.g., for energy-dampening).

We demonstrate such adaptive resource management capabilities

and use them to enable adaptive switching between controllers

with differing computational demands for the first time in a virtual

RTHS as is described in Section 4.

3 DISCRETE ELASTIC SCHEDULING
In this section we present a new discrete elastic task model for

parallel real-time systems. We then discuss implications of the

combined-elastic adaptations enabled by this model. We also prove

that scheduling of discrete elastic tasks under Federated Scheduling

is NP-Hard in the weak sense, and provide a pseudo-polynomial

time algorithm for scheduling them.
1

3.1 Task Model
Similar to the continuous elastic task model, in the discrete elastic

task model, each task τi has elasticity coefficient Ei and the assigned

utilizationUi of each task can range betweenU
(min)
i andU

(max )
i .

However, in the discrete model, rather than allowing any utilization

within the continuous range [U
(min)
i ,U

(max )
i ], each parallel task τi

has exactly ki discrete modes of operation. Each mode of operation

j (1 ≤ j ≤ ki ) for each task has a specific period (and implicit

deadline) T
(j)
i , work C

(j)
i , and span L

(j)
i . The candidate utilizations

for the task come from the period and work in each of these modes

of operationU
(j)
i = C

(j)
i /T

(j)
i , andU

(min)
i andU

(max )
i are the lowest

1
In this paper we focus on scheduling high-utilization tasks (Ui ≥ 1) via Federated

Scheduling, although low-utilization tasks (Ui < 1) can be (partitioned if necessary and

then) scheduled sequentially on a uniprocessor in a fashion similar to that described in

this section by focusing on keeping their aggregate system utilization below a desired

utilizationUd .

and highest such utilizations, respectively. In strictly period-elastic

tasks, all modes have the same work and span values (i.e., ∀x,y; 1 ≤
x ≤ ki , 1 ≤ y ≤ ki ;C

x
i = C

y
i , L

x
i = L

y
i ). Similarly, all modes of

operation in strictly computationally-elastic tasks have the same

period (i.e., ∀x,y; 1 ≤ x ≤ ki , 1 ≤ y ≤ ki ;T
x
i = T

y
i ). We use

Equation 2 to determinem
(j)
i , the number of processors required to

schedule τi in mode j. 2

We seek to schedule n tasks onm processors by selecting a mode

of operation j for each task τi (1 ≤ j ≤ ki ) while minimizing Equa-

tion 3. A pseudo-polynomial time algorithm for this is presented in

Section 3.4. The tasks may be fully independent, in which case there

are no restrictions on the potential modes of operation for each

task. In other cases, the potential modes of operation may encode

dependencies among tasks (e.g., all tasks must run at rates harmonic

to a base control rate). Even with those encoded dependencies, we

assume that each task is free to change among its modes inde-

pendently of the other tasks (e.g. any such rate dependencies are

encapsulated by only allowing modes that contain such harmonic

rates).

On its face the discrete elastic task model presented in this paper

is similar to one used decades ago by Kuo and Mok [14] to model

adaptive real-time tasks. However, there are several key differences.

Both models have a set of adaptive tasks with candidate modes

of operation. However, whereas our model allows for arbitrary

Ci and Ti combinations between modes of operation, the model

presented by Kuo and Mok scales task periods and workloads under

a constant utilization. For instance, τi = (Ci ,Ti )may have candidate

modes (2, 4), (2.5, 5), (3, 6) in [14] where all modes necessarily have

a utilization of 0.5. This is allowed in the discrete elastic model

presented here. However, a fourth candidate mode of (2, 5) with

utilization 0.4, which is also acceptable in our model, is not allowed

in theirs. Furthermore [14] seeks to assign periods in such a way as

tomaximize harmonic chains and thereforemaximize schedulability

on a uniprocessor. The period-assignment problem asks whether

there is a period assignment such that the maximum harmonic base

is at least a certain value. This problem is proven to be strongly NP

complete (i.e., no pseudo-polynomial time algorithm exists unless

P=NP). The problem considered here is fundamentally different.

This model does not (necessarily) care about harmonic chains and

uses a pseudo-polynomial time dynamic programming algorithm

for utilization selection.

3.2 Discussion
The continuous elastic task model allows for tasks to adapt their

periods or their workloads to any value over a continuous range

depending on the needs of the system. This is useful for many

kinds of tasks. Consider, for instance, an anytime algorithm [8]

that can return a valid answer at any instant with the quality of

the answer potentially improving as the algorithm is allowed to

run longer. Such an algorithm can be modeled as a task with an

elastic computational requirement that may vary over a continuous

range. However, not all algorithms are anytime algorithms: for

some tasks, meaningful results are only returned if the algorithm is

allowed to execute for certain specific durations. In a similar vein,

2
We assume each task receives at least 1 dedicated CPU under Federated Scheduling.

Any mode of operation withU (j )i <= 1 will receive a single dedicated processor.
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Figure 1: Continuous Computationally-Elastic Task Figure 2: Continuous Period-Elastic Task

Figure 3: Discrete Combined-Elastic Task Figure 4: Discrete Workloads and Harmonic Rates

periodic tasks that form part of a control loop may need to execute

at frequencies (and hence period values) that are consistent with

the remainder of the control loop (e.g., harmonic with respect to the

base system frequency), and cannot operate with arbitrary periods.

Therefore, the continuous elastic task model is not appropriate

for some important kinds of tasks. This becomes more apparent

when one considers that on actual hardware, task execution times

are essentially discrete. Processors treat time not as a continuous

interval but as a discretized count of cycles. Therefore on a general-

purpose CPU, no job can actually run for an arbitrary amount of

time, but instead executes for an integer number of CPU cycles.

Under the discrete elastic task model, each task τi has ki unique
modes of operation, each of which has an associated period and

workload. Varying only a single dimension (i.e., changing only

the period or workload as in the continuous model) may allow

for more appropriate management of the selected attribute than

the continuous elastic model. For instance, the discrete elastic task

model allows for the guaranteed selection of harmonic periods

among period-elastic tasks.

Perhaps an even greater benefit of the discrete elastic model is

its ability to allow exploitation of both period elasticity and compu-
tational elasticity. This combined elasticity increases the range of

potential modes of operation for a given task. Figures 1 − 4 demon-

strate the diversity of adaptations enabled by combined elasticity.

Each of the four images shows the same task exploiting different

types of elasticity. The y-axis is the task’s computational load (C),
and the x-axis is its frequency (1/T ). Any point within the allowed

region therefore represents a potential work and period assignment

for the task. Constant values U (min)
and U (max )

are represented

by dashed and dotted curves, respectively, so any valid assignment

of C and T must therefore fall between these two curves.

Figures 1 and 2 show the potential period and workload values

of a computationally-elastic task and a period-elastic task, respec-

tively, under the continuous elastic task model. Although there are

infinitely many acceptable period (or workload) values that keep

the utilization betweenU (min)
andU (max )

, the range of adaptation

for a single task is relatively narrow.

Contrast this with Figure 3, which demonstrates the potential pe-

riod and workload values of combined-elastic tasks enabled by the

discrete elastic task model. Although there are finitely many modes
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of operation, adaptation is allowed in both computational and pe-

riod dimensions, potentially offering a much broader adaptation

space. Any point in the entire region between the minimum and

maximum utilization curves may be a candidate mode of operation.

Thirty such (randomly-chosen) points are plotted in Figure 3.

Which (and how many) candidate points are available is then a

configurable application-specific concern. System designers can se-

lect as many or as few potential modes of operation as appropriate.

For example, anytime tasks that can perform arbitrary amounts

of work for arbitrary time periods have a multitude of possible

period and workload combinations. In other cases (such as RTHS),

application constraints such as the need to run at harmonic rates

and/or have a fixed set of computational completion points restrict

or even determine actual modes of operation. Figure 4 shows a

sample RTHS task with four potential harmonic periods and four

potential workloads. Note that as Figure 4 illustrates, not all work-

loads can be run at all harmonic periods since the utilization may

exceed the maximum utilization curve as the workload increases

or the period decreases.

Finally, we note that some loss of utilization may be incurred

by discretization. For instance, if the same period-elastic task were

scheduled under both the continuous and discrete elastic models,

the continuous model may assign a task a feasible period that is

between two discrete candidate periods. To maintain schedulability,

the task may need to be assigned the longer of the two periods

under the discrete model, thereby resulting in a lower utilization

than under the continuous model (at the potential cost of some

control performance). However, we note that the smaller the gap

between candidate periods in the discrete model, the smaller the

loss of such system utilization due to discretization is. Anytime

tasks can exploit this small loss of utilization by selecting many

potential modes of operation that are close together in both di-

mensions, to approximate continuous elasticity while gaining the

benefit of combined elasticity, at a (potentially acceptable) cost of a

longer-running scheduling algorithm (see Section 3.4). We discuss

and study potential utilization loss due to discretization further, in

Section 5.

3.3 Proof of NP-Hardness
We now prove that the Federated Scheduling of parallel discrete

elastic tasks is NP-hard, via a reduction of an instance of the Knap-

sack Problem [12] to an instance of the Discrete Elastic Scheduling

Problem.

Theorem 1. Discrete Elastic Scheduling is NP-hard.

Proof: Reduce knapsack to Discrete Elastic Scheduling.

An instance of knapsack is specified as follows:
3

Iknapsack =
〈{
(si ,vi )

}n
i=1, S,V

〉
where the objective is to fill a knapsack of capacity S with items

chosen from a set of n items, and item i (i = 1...n) has weight si
and value vi , such that the weight of the selected items sum to no

more than the knapsack’s capacity S and their combined value is

maximized, with a total of at least the target value V .

3
All parameters are assumed to be rational numbers.

Given such a specification, we construct an instance of the Elastic

Scheduling problem with n tasks, each of which has 2 modes of

operation, to be scheduled on (n + S) processors. All n tasks have

the same period in all modes of operation, denoted x (i.e., all tasks

are computationally-elastic–we note that though all tasks in this

construction are computationally-elastic, the same algorithm also

schedules period-elastic and combined-elastic tasks). We construct

each task’s first mode of operation as follows: Assign C
(1)

i = L
(1)

i =

x for all i . As a consequence these are all sequential zero-slack

modes of operation, andm
(1)

i = 1 (for all i). For each i , define the

second mode of operation as C
(2)

i = x · (1 + si ) and L
(2)

i = 0. These

are “embarrassingly parallel” modes of operation. Note that we

consequently havem
(2)

i = (1+ si ). Let elastic coefficient Ei = s
2

i /vi .
Note that choosing the second mode of the i’th task requires an

additional si processors (since the first mode requires 1 processor).

Let Γ1 and Γ2, respectively, denote the tasks for which the first mode

and second mode, respectively, are selected. Recall that in Elastic

Scheduling, we seek to minimize

∑
i

1

Ei

(
U
(max)

i −Ui
)
2

. Therefore:∑
i

1

Ei

(
U
(max)

i −Ui
)
2

≡
∑
i

1

Ei

(C(2)i
x
−Ui

)
2

≡
∑
i

1

Ei

(x · (1 + si )
x

−Ui
)
2

≡
∑
i ∈Γ1

1

Ei

(
(1 + si ) −Ui

)
2

+
∑
i ∈Γ2

1

Ei

(
(1 + si ) −Ui

)
2

≡
∑
i ∈Γ1

1

Ei

(
(1 + si ) − 1

)
2

+
∑
i ∈Γ2

1

Ei

(
(1 + si ) − (1 + si )

)
2

≡
∑
i ∈Γ1

s2i
Ei

≡
∑
i ∈Γ1

vi

We thereby conclude that a solution to the Discrete Elastic Sched-

uling Problem in which the function in Equation 3 takes on a value

at most (∑
i
vi
)
−V

exists if and only if Iknapsack ∈ knapsack.

3.4 Pseudo-Polynomial Time Scheduling
Algorithm

Multiple-Choice Knapsack [20] is similar toKnapsack, but rather

than selecting items from a single set, there are multiple mutually-

exclusive sets, and exactly one item must be chosen from each set

in such a way as to maximize profit and ensure a total weight below

the knapsack’s capacity. We now provide a pseudo-polynomial time

algorithm for Discrete Elastic Scheduling by reducing an instance

of it to an instance ofMultiple-Choice Knapsack.

A pseudo-polynomial time algorithm.We define the following

reduction from Discrete Elastic Scheduling to Multiple-Choice
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Figure 5: Virtual RTHS Details

Knapsack: each of the n tasks with ki modes of operation becomes

one of n mutually exclusive sets with ki distinct items. Each task in

Discrete Elastic Scheduling needs a mode to be selected, and each

set fromMultiple-Choice Knapsack needs one item to be selected.

Task τi operating in mode j becomes an item in the corresponding

set with profit
1

Ei

(
U
(max)

i −U
j
i

)
2

and weightm
(j)
i . The knapsack

has capacitym. By giving each item weightm
(j)
i , we ensure that if

they fit in a knapsack of capacitym, then the corresponding tasks

in the selected modes are schedulable onm processors. Although

traditional Multiple-Choice Knapsack seeks to maximize the

value of selected items, we instead attempt to minimize the value

in Equation 3, which is exactly the profit assigned to each item. We

thus use a min() function in place of a max() function that would

otherwise be used, which has no bearing on the correctness or

complexity of the algorithm.

We note that by successfully selecting one item from eachmutually-

exclusive set for the knapsack while keeping their combined weight

within the knapsack’s capacitym, we also select a mode of oper-

ation for each task on at mostm processors. We therefore have a

valid parameterization of the Discrete Elastic Scheduling instance.

A pseudo-polynomial dynamic programming algorithm pre-

sented in [13] finds an optimal solution toMultiple-Choice Knap-

sack by considering the maximum value achievable when con-

sidering the first l mutually exclusive sets and reduced knapsack

capacity d , in our case, 1 ≤ l ≤ n and 1 ≤ d ≤ m. We reproduce a

slightly modified version of this algorithm in Algorithm 1: rather

than finding the maximum “value” of items in a knapsack, we seek

to minimize

∑n
i=1

1

Ei (U
(max )
i −Ui )

2
.

In Algorithm 1 we build a two-dimensional table MCKES where
MCKES[d][l] gives the optimal solution after considering the first

l tasks on d processors. We begin by assigning a score of infinity

(since we are minimizing) to both the impossible case of scheduling

l tasks on 0 processors (Line 1) and the trivial case of scheduling

0 task on d processors (Line 2). The for loop beginning on Line 3

considers scheduling tasks on d CPUs. The inner for loop beginning
on Line 4 similarly considers the first l tasks on the d processors

available. While iterating we assign each task a mode of operation,

with the goal of minimizing the objective function in Equation 3.

Hence we assign the MIN score of each task an initial score of

infinity (Line 5) and consider eachmode of operation j in turn (Lines
6-14). Line 7 makes sure there are enough unallocated processors to

select mode j. If not, we disregard mode j. Otherwise, we consider

Algorithm 1 Multiple Choice Knapsack Elastic Scheduling

(MCKES)

1: MCKES[0][l] ← ∞
2: MCKES[d][0] ← ∞
3: for d ← 1...m do
4: for l ← 1...n do
5: MIN ←∞
6: for j ← 1...kl do
7: if d −m(j)l ≥ 0 then
8: if l == 1 and

1

El
(U
(max )
l −U

(j)
l )

2 < MIN then

9: MIN ← 1

El
(U
(max )
l −U

(j)
l )

2

10: else if MCKES[d −m
(j)
l ][l − 1]+

1

El
(U
(max )
l −U

(j)
l )

2 < MIN then

11: MIN ← MCKES[d −m
(j)
l ][l − 1]+

1

El
(U
(max )
l −U

(j)
l )

2

12: end if
13: end if
14: end for
15: MCKES[d][l] min(MIN ,MCKES[d − 1][l])
16: end for
17: end for
18: returnMCKES[m][n]

whether selecting mode j decreases the current minimum (Line

10). If so, the new minimum value is stored (Line 11). In the special

case that l == 1 (this is the first task scheduled), the MIN score

simply becomes
1

El
(U
(max )
l −U

(j)
l )

2
(Lines 8-9). After considering all

potential modes of operation, we assignMCKES[d][l] the minimum

of MIN and MCKES[d − 1][l] (Line 15). The final optimal value

is found at MCKES[m][n]. One can keep track of which mode is

selected at each iteration for task τl , and the set of modes that give

the value in MCKES[m][n] are then assigned to their respective

tasks.

Runtime complexity. Algorithm 1 has worst-case running time

Θ(m × N ), where N =
∑n
i=1 ki , as there arem CPUs to allocate (for

loop beginning on Line 3) and N modes of operation selected for

each value ofm (for loops beginning on Line 4 and on Line 6).

A note about sequential tasks. As alluded to in Footnote 1, Al-

gorithm 1 can be applied to the scheduling of sequential elastic



RTNS 2020, June 9–10, 2020, Paris, France Orr et al.

tasks on a uniprocessor by: (1) assigning each item associated with

a candidate mode of operation, a weight equal to the corresponding

utilization; and (2) assigning the knapsack a capacity equal to the

desired system utilizationUd .

4 ADAPTIVE VIRTUAL REAL-TIME HYBRID
SIMULATION EXPERIMENT

To evaluate our discrete elastic scheduling approach and to validate

its usefulness in a real-world application, in this section we present

a virtual real-time hybrid simulation (RTHS) experiment that (1)

has tasks with various discrete work and period values in different

modes of operation, (2) can exploit our discrete elastic scheduling

approach at run-time to improve experiment accuracy by switching

adaptively between modes of operation, and (3) can handle con-

straints like harmonic rates and discrete workloads effectively. To

our knowledge, this is the first time even a virtual RTHS that can

adapt its period and/or computational load has been conducted.

This simple experiment is meant as a proof of concept that dis-

crete elastic scheduling and the adaptations thereby enabled are

beneficial to real-world applications (namely RTHS). Therefore,

we start with a less complicated setup than would be involved

with validating a new structural component. This virtual RTHS is

a tracking problem, meaning we send a displacement signal to a

moving non-linear spring (henceforth referred to as the plant), and
we attempt to make the plant follow the displacement given in the

input signal as closely as possible.

The details of our experiment are shown in Figure 5. The input

into the system is a recording of the displacement of a physical

specimen that has been excited by forces taken from the El Cen-

tro earthquake. This is sent to an inverse compensator, which en-

hances tracking performance by reducing/smoothing small residual

time delays introduced by the control algorithm. The controller

itself uses a modified robust integrated actuator control (RIAC)

strategy [19], which uses H-infinity optimization [11] to provide

a trade-off between performance and robustness. The H-infinity

controller uses the smoothed desired displacement passed to it from

the inverse compensator and an estimate of the plant’s current lo-

cation to determine a command displacement to send to the plant.

This estimate is the output of either a Kalman filter or a particle

filter (depending on which mode of operation the task is in), both

of which provide an estimate of the plant’s current displacement

based on noisy data (the last known measured displacement of

the plant and the last commanded displacement). Each of these is

calculated once per iteration and both inform the behavior of the

system in the next iteration. It is assumed that when the desired

displacement exceeds a certain threshold (i.e., when the plant is

too far from its origin), the plant’s behavior becomes more difficult

to predict. Therefore, the more computationally-expensive particle

filter is used then, while the Kalman filter is used otherwise.

All of the above components except the plant (which is simulated

on an xPC target machine
4
) are runwithin a single parallel real-time

task on Linux with the RT-PREEMPT patch. The relative simplicity

of this experiment means that multiple tasks are not needed to

accomplish the main goal of this virtual RTHS (vRTHS) experiment.

4
MathWorks’s Speedgoat/XPC Target runs in coordination with real-time Simulink. It

is a widely-used platform for a variety of cyber-physical systems, including RTHS.

To gauge our approach more fully however, for scenarios where

there may be different substructures of a building to simulate (at po-

tentially different rates or detail levels) within a realistic structural

validation experiment, we generate additional synthetic discrete

elastic tasks to run alongside the vRTHS task, as there would be in

a more complex virtual RTHS. These tasks may adapt their system

resources (i.e., operate in different modes of execution) in response

to the virtual RTHS task whenever it changes modes of operation

from using the Kalman filter (which requires 1 processor) to the

particle filter (which requires 2 processors), or vice versa. Similar to

a structural validation RTHS experiment with multi-time stepping,

we constrain each synthetic task to run at a rate that is harmonic

with the 2048Hz rate needed by the virtual RTHS. Some of these

new tasks are period-elastic, some are computationally elastic, and

some are combined-elastic.

To perform this experiment, we extended the parallel (continu-

ous) elastic concurrency platform from [17], which is available as

open-source [1]. The underlying system calls, concurrency mecha-

nisms, and synchronization techniques remain unchanged, but we

replaced the original scheduling algorithm with Algorithm 1. All

tasks were run on a 16 core machine with two Intel E5-2687W pro-

cessors running at a constant 3092.616 MHz with Hyperthreading

disabled. The RTOS used was x86-64 Linux with the RT-PREEMPT

patch, and all programs were written in C++ and compiled with

GNU G++ 5.2.0.

Figures 6 and 7 show the results of our adaptive virtual RTHS

experiment. The solid line shows the curve of the desired plant dis-

placement, while the dotted line shows the estimated displacement

output from the particle filter or the Kalman filter. The horizontal

lines mark the mode-change criterion. For any desired displacement

between the lines, the estimator uses the Kalman filter. The system

switches modes and uses the particle filter when the plant’s desired

displacement is too far from its origin, i.e., outside the lines.

Looking at Figure 6, the two curves appear nearly indistinguish-

able. However, when we zoom in on the peaks in Figure 7, the

difference becomes visible.

As mentioned before, we ran synthetic tasks with the virtual

RTHS task that adapted with its mode change, similar to how more

elaborate RTHS experiments would do. Figures 8 and 9 show the

workload and period of each task in the system during operation

of the Kalman filter and particle filter, respectively. Note that the

virtual RTHS task and Synthetic Task 3 adapt their workloads (be-

tween 488µ sec and 812 µ sec and between 2000µ sec and 5000µ
sec, respectively); Synthetic Task 1 adapts its period (between 1953

µ sec and 976 µ sec), and Synthetic Task 2 adapts both its period

(between 976 µ sec and 1953 µ sec) and workload (between 8000 µ
sec and 5500 µ sec). Also note that there are only 3 period values

used–2048Hz≈ 488µ sec, 1024Hz≈ 977µ sec, and 512Hz≈ 1952µ sec.

This is because the estimator must run at a constant 2048Hz and

substructure tasks in more complicated RTHS experiments must

run at harmonic rates with respect to the main feedback control

loop.

A normalized root mean squared error (nRMSE) of approximately

0.5% is considered acceptable in the RTHS community. The nRMSE

between the estimated and desired displacement shown in Figure 6

is 0.267%. Therefore, the virtual RTHS not only successfully transi-

tions modes, but also performs well.
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Figure 6: vRTHS Desired vs. Predicted Displacement
Figure 7: A Closer Look at Desired vs. Predicted Displacement

Figure 8: System Overview during Kalman Filter Execution Figure 9: System Overview during Particle Filter Execution

It is important to note that the primary function of this experi-

ment is to validate that discrete elastic scheduling can allow for the

on-line adaptation of resources for parallel tasks in a real system.

The tracking of a spring via an adaptive controller accomplishes

this goal and lays a necessary foundation for using the discrete elas-

tic scheduling technique for larger experimentation for structural

validation via RTHS in the future.

5 EFFECTS OF TASKSET DISCRETIZATION
In this section we look at the effect that discretization of tasks’

periods and workloads has on schedulability of example tasksets

through loss of system-wide processor utilization compared to

the continuous version. We begin by randomly generating 10, 000

continuous parallel elastic tasks in the manner described in [17].

Each task is either period-elastic or computationally-elastic, and

we schedule these continuous tasks according to the optimal algo-

rithm provided in [17, 18], noting the overall system utilization and

objective function value. We then create four discretized tasksets

from each continuous one by assigning a discretization delta of

0.05, 0.1, 0.2, and 0.5, to each task, meaning we discretize each

task in such a way that in the new tasksets, there is a candidate

utilization every 5%, 10%, 20%, and 50% of the way betweenU (min)

and U (max )
, plus the endpoints. For example, a period-elastic task

with an T (min) = 0 and T (max ) = 100 would be discretized to have

candidate period values of 0, 20, 40, 60, 80, and 100 for ∆ = 0.2, and

it would have candidate period values of 0, 10, 20, 30, 40, 50, 60, 70,

80, 90, and 100 for for ∆ = 0.1, etc. We then schedule each of these

40, 000 generated discrete elastic tasks using Algorithm 1, again

noting the system utilization and objective function value.

Figures 10 through 13 show representative results. Figure 13

shows the average (and standard deviation of the) system utiliza-

tion for each level of discretization. Without exception, each dis-

cretized taskset had a higher (worse) objective function value from

Equation 3 than the continuous taskset from which it was derived.

Typically, the objective function value increased with the discretiza-

tion delta, too, as in the examples shown in Figure 10 and Figure 12.

The single exception in 10,000 tasksets is depicted in Figure 11. In

this case the optimal solution for the taskset obtained from ∆ = 0.1

occurs when each task selects the utilization value obtained from

the 50th percentile. This is exactly the subset of candidate utiliza-

tions used to obtain the taskset derived from ∆ = 0.5 and so also

gives the optimal solution for that taskset (a subset of the former).
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Figure 10: Taskset 1 Utilization and Objective Value Figure 11: Taskset 2 Utilization and Objective Value

Figure 12: Taskset 3 Utilization and Objective Value Figure 13: Average Utilization (10K Tasksets)

However, none of those selected periods are in the taskset derived

from ∆ = 0.2 (a different subset of the former). Therefore, the objec-

tive function’s value when ∆ = 0.2 is necessarily higher. This trend

of a (typically) worsening objective function value with an increase

of discretization is thus expected. We note that objective function

values cannot be compared directly between tasksets as they are

dependent on tasks’ elastic coefficients and maximum utilizations.

For the majority of tasksets, system utilization also decreased

as a taskset became more discretized, as in Figure 10. However,

because we make scheduling decisions based on the objective func-

tion (weighted task utilization) rather than on system utilization,

there are cases when making an inferior objective function decision

increases taskset utilization: this occurred in approximately 18% of

tasksets (consider Figure 12 where ∆ = 0.1 gives a higher system

utilization than even the continuous version of the taskset).

6 CONCLUSION
In this paper, we have presented a new elastic task model with dis-

crete sets of possible utilizations for each task. This model allows

each task to modify its workload and/or its period when changing

modes of operation, instead of adapting in only one of those dimen-

sions. This in turn allows a wider range of parallel real-time tasks

to exploit elastic scheduling techniques, and also offers a greater

diversity of potential adaptations of each task, over a larger region

of potential periods and workloads. It is also better aligned with

task execution times on realistic hardware.

We have shown how thismodel can support new real-time hybrid

simulations with discretely computationally-elastic, period-elastic,

and combined-elastic parallel real-time tasks under the Federated

Scheduling paradigm, via a pseudo-polynomial time scheduling

algorithm. We used this scheduling algorithm to implement, for the

first time, adaptive resource management to enable adaptive switch-

ing between controllers with different computational demands in

a virtual real-time hybrid simulation (vRTHS), and examined the

effects of scheduling tasks having discretized vs. continuous candi-

date utilizations in terms of both system utilization and objective

function value.

The results presented in this paper motivate further expansion

of this research as future work. Of particular interest is to begin

using these tecniques for full-scale RTHS structural validation.
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