TEECheck: Securing Intra-Vehicular Communication Using
Trusted Execution

Tanmaya Mishra Thidapat Chantem Ryan Gerdes
tanmayam@vt.edu tchantem@vt.edu rgerdes@vt.edu
Virginia Tech Virginia Tech Virginia Tech

Arlington, Virginia

ABSTRACT

Modern vehicles have a large number of advanced driver assistance
systems (e.g., adaptive cruise control and automatic lane keeping)
that depend on the timely availability of data exchanged through
the CAN bus from a variety of ECUs and sensors. Considering the
large amount of data on the CAN bus, CAN has become a lucrative
target for malicious parties wishing to take control of a vehicle.
Specifically, an attacker may compromise an ECU to gain access
to the bus. It is, thus, imperative that the CAN bus is secured from
disruption by compromised ECUs to ensure its correct and timely
operation. We design a new system architecture for ECUs that
leverages trusted execution environments and propose TEECheck,
an on-device message vetting mechanism to proactively contain
masquerade and denial-of-service attacks, as well as eliminate infor-
mation leakage. The uniqueness of our approach is that it require
neither authentication at the receiver end adds any overhead if
there is no need for CAN bus access. Experiments show that our
technique has very low and predictable overhead, regardless of the
workload.

CCS CONCEPTS

« Computer systems organization — Real-time operating sys-
tems; « Security and privacy — Embedded systems security;
Hardware-based security protocols.

ACM Reference Format:

Tanmaya Mishra, Thidapat Chantem, and Ryan Gerdes. 2020. TEECheck:
Securing Intra-Vehicular Communication Using Trusted Execution. In 28th
International Conference on Real-Time Networks and Systems (RTNS 2020),
June 9-10, 2020, Paris, France. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3394810.3394822

1 INTRODUCTION

Today’s vehicles are complex machines. While they still have the
same basic design of the internal combustion engine and transmis-
sion as vehicles from decades ago, they now have sophisticated,
highly automated features such as advanced fuel injection systems,
hybrid drivetrains, traction control, adaptive cruise control, and
automatic lane-keeping, all of which are supported by sensor data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RTINS 2020, June 9-10, 2020, Paris, France

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7593-1/20/06...$15.00
https://doi.org/10.1145/3394810.3394822

Arlington, Virginia

Arlington, Virginia

and processing units. In addition, vehicles have become even more
like regular computing systems, with (1) remote software updates
that improve performance, or (2) having a certain degree of au-
tonomy, allowing it to drive itself for short distances. To support
these functionalities, vehicles must now generate, process and act
upon a large amount of information to make driving safer, more
comfortable, and more efficient.

Vehicular control systems are distributed throughout the vehicle,
with some located physically close to the sensors and actuators with
which they interact. While there have been proposals to consoli-
date the various components into a centralized system [3, 33] that
controls every aspect of the vehicle, most vehicles still utilize sepa-
rate electronic control units (ECUs) that are dedicated to specific
functions. Modern vehicles have upwards of 100 different ECUs and
this number is constantly increasing as vehicle manufacturers add
functionality. While one ECU may control the engine, others may
control the vehicle entertainment system, dashboard information,
brakes, fuel system, etc. Advanced driver assistance mechanisms
act upon information, in real-time, from many of these ECUs si-
multaneously. For example, certain luxury modern vehicles have
crosswind stabilization which adjusts the vehicle braking character-
istics under strong crosswinds. To do so, information from sensors
measuring wind speed, steering position and characteristics (steer-
ing column ECU), and vehicle speed (engine control unit), among
others, is processed in real-time to provide safe braking assistance.

To achieve timely sharing of vehicle runtime information be-
tween ECUs while reducing the size, weight, and power constraints
(SWaP) and manufacturing cost, modern cars utilize a shared bus
system for inter-ECU communications. In this paper, we consider
the CAN bus, an industry standard protocol for intra-vehicular net-
works. There is a large body of work in both academia and industry,
along with the millions of cars that utilize it, which show that CAN
is an efficient and robust communication network. While the older
CAN protocol may not be sufficient for the autonomous vehicles of
the near future, a newer variant (CAN-FD [17]) has been designed
to increase the longevity of the protocol. However, with the increas-
ing amount of data being shared over the bus, it becomes critical
to develop techniques to not only maintain bandwidth availability
but also the real-time nature of message transmission.

In addition to efficiency and timeliness, security has become an
important consideration. As vehicles increasingly make decisions
autonomously to ensure passenger comfort and safety, it becomes
imperative that their operations are not disrupted. Due to the crit-
ical role of the CAN bus in facilitating and maintaining safe and
reliable vehicle operation, CAN may draw heavy interest from
malicious actors who wish to take control of a vehicle or change op-
erational characteristics to make it unsafe for its riders. In fact, prior

https://doi.org/10.1145/3394810.3394822
https://doi.org/10.1145/3394810.3394822
https://doi.org/10.1145/3394810.3394822

RTNS 2020, June 9-10, 2020, Paris, France

work [8, 18] has already shown various attacks that can take place
on a vehicle, allowing malicious parties to perform actions such as
applying brakes and causing a crash. For instance, newer vehicles
have additional communication interfaces such as WiFi, Bluetooth
and cellular connectivity to connect to external servers for software
updates or for passenger convenience. These are usually provided
by ECUs that are often directly connected to the vehicle’s CAN
bus. Such external interfaces may be vulnerable to exploitation and
become a gateway to access the vehicle. For example, it has been
shown that the Bluetooth stack in the car infotainment unit has
vulnerabilities that when exploited, allow attackers to run arbitrary
code on an ECU [8]. The attacker could then use this compromised
ECU to perform masquerade attacks [6] where the attacker poses as
a legitimate entity and sends out spoofed messages that could affect
and/or control critical parts of the vehicle, e.g., sending messages to
cut off fuel supply to the engine, or launch denial-of-service (DoS)
attacks by flooding the bus with garbage messages. This is possi-
ble since CAN is a broadcast bus without message authentication.
If such attacks are carried out in real-world scenarios, such as in
high-speed traffic, it could have catastrophic consequences.

To maintain predictable and timely operation on the CAN bus,
we believe that the best form of defense would be at the source
itself. That is, an attacker that fails to utilize the bus is less effective
than one which is given access to the bus and may have the ability
to disrupt message transmissions. This paper builds upon this core
idea and proposes a lightweight technique to secure the CAN bus
from attacks such that the compromised ECU cannot engage the
bus more than the original (uncompromised) ECU.

To do so, we propose that ECUs utilize trusted execution envi-
ronment (TEE)-capable processors which allow code compartmen-
talization, making it possible to verify CAN message source and
destination within an ECU itself instead of at the receiver ECU.
TEEs are isolated execution environments designed to run trusted
software and are supported by processor architecture extensions
which include strict access control policies to processor compo-
nents, peripherals, data, and address buses. TEE implementations
such as Intel SGX [11] and ARM TrustZone [4] can currently be
found in commercially available hardware and have been used in a
variety of security-critical applications, such as Samsung Pay [5].
In addition, TEE is a known entity, as there exists a large body of
work [27] which studies the security benefits and pitfalls of TEEs.
Although our approach requires changes to the critical hardware
components inside a vehicle, we believe it to be an especially ef-
fective one, both in terms of performance and security. In fact, our
approach incurs no increase in CAN bus bandwidth consumption
and we observe substantial performance improvements over cur-
rently available approaches while running on much slower (12 MHz
clock instead of 100+ MHz clock for typical ECUs) hardware. The
shift towards using CAN-FD over CAN in recent vehicles [2] shows
that the automotive industry is willing to utilize newer technologies
when significant advantages are demonstrated. This paper has the
following major contributions:

(1) We propose a TEE-based ECU system architecture to sepa-
rate message generation and consumption from CAN trans-
mission and reception.

Tanmaya Mishra, Thidapat Chantem, and Ryan Gerdes

(2) Based on our new system architecture, we present TEECheck,
an intermediary CAN bus interface which achieves efficient
and trustworthy vetting of message origin and frequency
before message transmission, and of request origin before
received message data is disbursed. In particular, TEECheck:

(a) Detects and prevents an attacker from masquerading as
another legitimate message source such as other tasks on
the same or different ECU.

(b) Provides a proactive and on-ECU mechanism to mitigate
DoS attacks on the CAN bus. Our technique is the first to
utilize TEE to contain the aforementioned attacks to the
compromised ECU and does not require a receiver ECU to
validate whether a message is from a legitimate party.

(c) Provides an on-device mechanism to prevent an attacker
from any access to messages not intended for it, i.e., pre-
vents snooping. To the best of our knowledge, there are
no other techniques designed for the CAN bus that pre-
vents the attacker from accessing the CAN message frames
meant for other endpoints.

(3) We experimentally show that the overhead associated with
our approach, which is incurred only when a task requires ac-
cess to the CAN bus, is fairly negligible and quite predictable,
making our approach suitable for resource-constrained de-
vices running real-time applications. Specifically, the over-
head typically takes 477 us from message generation to mes-
sage transmission, and 480 us for message data reception,
on a 12 MHz processor which would translate to 50 ps on a
100+ MHz processor.

While we consider CAN 2.0 as our target application in this paper,
our mechanism can be easily adapted to any broadcast communica-
tion mechanism, such as I2C or SPI, with minimal changes. In terms
of TEE implementation, we selected the ARM TrustZone for Cortex-
M (ARMv8-M architecture with Security Extensions) [36] which,
although fairly recently introduced, has a number of commercial-
off-the-shelf microcontroller implementations available that can be
used in modern ECUs today as drop-in replacements.

2 RELATED WORK

CAN bus security has become an important research area in the past
several years. Considering the safety-critical nature of the systems
where CAN is utilized, e.g., automobiles, this is not surprising. CAN
bus hardening approaches are spread across the communication
stack layers. At the physical layer, intrusion detection systems (IDS),
have been introduced. These schemes are variants of clock-skew
and voltage-based fingerprinting which help to detect and, in some
cases, identify attacker ECUs. While such techniques can detect
an attacker within a few frames [9, 10, 35] or single frame [13],
they still, in general, require a specialized monitoring node for
detection and are reactive in nature. That is, they only detect when
the attacker has managed to engage the bus. Our aim is to limit the
attacker to the compromised ECU itself.

Network-level authentication techniques for CAN bus have also
been widely studied. LeiA [26] and vatiCAN [25] are AUTOSAR [14]
compliant authentication schemes which utilize some form of MAC
based authentication at the receiver end. To compensate for the in-
creased overhead, others such as CANAuth [32] and LiBrA-CAN [15]

TEECheck: Securing Intra-Vehicular Communication Using Trusted Execution

Power ON

Non-Secure (NS) Non-Secure Secufe (S)
Callable
User Application f
e BXNS y Initializati
Task | | Task | | Task = Sf
1 2 Branch
{ + {

| NS Peripheral Drivers |

NS Peripherals

S Peripheral Drivers
S Peripherals

Figure 1: ARMv8-M microcontroller power ON code flow

are based on variants of CAN+ [37], a backward-compatible variant
of CAN capable of higher data rates, or CAN-FD-Sec [7] based on
the CAN-FD [17]. Unlike CAN+, CAN-FD is expected to be the
next-generation replacement for CAN 2.0. All these works require
receiver-end authentication, which incurs unnecessary bus over-
head since illegitimate messages must still be transmitted before
they can be authenticated. In addition, these work cannot prevent
DoS attacks since receiver-end authentication cannot stop a trans-
mitter from sending out a message. In contrast, we limit the fre-
quency of message transmission of the compromised ECU. Further,
we aim to be CAN variant agnostic. Our other goal is to propose
a lightweight hardware based approach which requires minimal
changes to the ECU software. In contrast, Berg et al. [7] considers
separating the infotainment system from the rest of the vehicle by
implementing secure gateways, which requires significant software
addition and can incur large time overhead.

The concept of trust has been used to fortify CAN bus communi-
cation in prior work. VeCure [34] uses the concept of trust groups
where ECUs handling critical operations are kept in the higher trust
group, authenticating each other using a MAC based scheme. The
work by Gui et al. work [16] is more similar to ours in that it utilizes
hardware trusted platform module (TPM) for establishing a root of
trust. Perhaps the closest work, in spirit, to ours is VulCAN [31]
where the authors utilize trusted execution. Their technique builds
upon LeiA and vatiCAN by utilizing a trusted computing base (TCB,
in their case, Sancus [24]) inside which they generate their MACs.
VulCAN takes much longer, i.e, around 2 ms for the entire authenti-
cation sequence. In addition, addressing DoS attacks are outside the
scope of all of these techniques since they depend on the receiver
for attack detection.

3 PRELIMINARIES

We now provide an overview of the underlying technologies of our
system. Specifically, we consider the ARM TrustZone for ARMv8-M
based microcontrollers and the CAN protocol. Due to the page limit,
we only provide the details that are relevant to our work. For more
details, readers are referred to existing publications [12, 36].

3.1 ARM TrustZone for Cortex-M

ARM TrustZone for Cortex-M [36] (based on ARMv8-M architec-
ture) is a variant of the TrustZone technology first introduced in

RTNS 2020, June 9-10, 2020, Paris, France

ARM’s Cortex-A processors. ARM TrustZone is a set of processor
architecture extensions which allow creating TEEs via software.
It divides the processor execution into two domains, secure and
non-secure. Code running in the secure domain has access to in-
formation from both domains while code running in the non-secure
domain has access to information only from the non-secure do-
main. While TrustZone for Cortex-A is complex and has significant
overheads [23], TrustZone for Cortex-M is designed to be very
lightweight. To reduce the overhead for a low-powered microcon-
troller to switch between the two states, TrustZone for ARMv8-M
utilizes a near static memory-mapped mechanism for delineating
the domains. The TrustZone divides the memory space such that
certain addresses are made available only to the secure domain.
This is facilitated through a hard-wired controller logic called the
implementation defined attribution unit (IDAU). The IDAU creates
a striated memory partitioning scheme such that it is easy to iden-
tify to which domain an address belongs. Specifically, if the 29th bit
of the memory address is 0, it is a secure domain address. Addition-
ally, certain sections of the non-secure domain can be upgraded
to the secure domain through software using the security attribu-
tion unit (SAU). Depending on the implementation, peripherals
are memory-mapped into both secure and/or non-secure memory
locations. The non-secure peripheral locations are enabled via a
peripheral access controller (PAC) or security control unit (SCU).
The SAU, PAC, and SCU are themselves mapped to secure locations
by the IDAU, making it impossible for non-secure code to access or
modify them, unless TrustZone is broken.

The secure code memory location is further divided into secure
(S) and non-secure Callable (NSC) locations. While the former can-
not be accessed by any code running in the non-secure domain (or
it would cause the system to generate a hard fault likely requiring
human intervention), the NSC locations provide an intermediary
jump point where the secure gateway (SG) instruction is kept which
switches the processor mode to secure when executed. All calls
into the secure side have the interface function defined in the NSC.
From an execution point of view, both domains have a Thread and
Handler mode for regular and interrupt code executions, respec-
tively. If an interrupt is generated from the non-secure side and the
secure code is currently executing, all information is pushed to the
secure stack and registers are cleared before the switch to the non-
secure interrupt handler. The same set of steps happen when the
situation is reversed. Based on our experiments (Section 7), the fact
that both domains have the same execution flow and capabilities in
ARMvS-M allows for consistently low interrupt latency regardless
of the domain from which the interrupt originates (4 us overhead
for switching in our case).

Figure 1 shows the flow of code execution once an ARMv8-M
controller is powered on. Code execution for ARMv8-M proces-
sors begins in the secure domain, which then branches into the
non-secure domain. The bulk of the application code is written
to run in the non-secure domain, including a real-time operating
system (RTOS), task code and peripheral drivers in our case!. When

!While it is possible to run all the code inside the secure domain (within space limita-
tions), it is notoriously difficult to produce bug-free code on a larger scale [30]. An
attacker with knowledge of vulnerabilities in the secure code could compromise the
entire system since the secure code has access to the entire memory space.

RTNS 2020, June 9-10, 2020, Paris, France

required, the application task code makes calls to the secure code
via the intermediary functions present in the NSC.

It should be noted that the secure and non-secure domains are
orthogonal to the regular processor privilege levels. Within each
domain, the processor still executes under the traditional privilege
model, where interrupts and the RTOS may run in privileged pro-
cessor execution mode while task code may run under unprivileged
processor execution mode. Further, there may be a shared or sepa-
rate memory protection unit (MPU) for the secure and non-secure
domains. An MPU is accessible from the privileged execution mode
and enforces fine-grained access rights to certain memory locations
for privileged and unprivileged code. Privileged code can access
memory locations not specified in the MPU table, while access
from unprivileged code would generate a fault. It must be noted
the SAU has a very similar operation to that of the traditional mi-
crocontroller MPU but they are separate entities that can work
together. Specifically, the SAU is used to augment the partitioning
of the memory space into secure and non-secure domains over and
above the fixed partitioning scheme provided by the IDAU while
the MPU works within this partitioned memory space to provide
different access right to different pieces of code. For example, an
RTOS can load task-specific access rights before context switching
to a task. Our solution uses a combination of the MPU and careful
partitioning of resources using the TrustZone.

3.2 Controller Area Network (CAN)

CAN is a protocol originally designed for communication between
different vehicle components but has been applied to other areas
such as industrial automation. It is a serial communication protocol
designed to broadcast small messages over a shared bus. CAN uses
a multi-master communication paradigm where nodes compete, on
a per-message basis, to send messages on the bus and it is upto
each node to accept or ignore the messages.

Currently, vehicles utilize the CAN 2.0 version which supports
bitrates up to 1 Mbits/sec, although there has been ongoing effort to
introduce the newer CAN-FD (CAN flexible data rate) [17] variant
which allows larger message data (64 bytes instead of 8 bytes) and
higher bitrates of up to 5 Mbits/sec. The CAN 2.0b standard frame
format is shown in Figure 2. CAN supports different types of frame
formats, including a DATA frame which contains the actual payload
for communication between nodes, a REMOTE frame which is sent
from a node requesting data from another node, an ERROR frame
which is sent from a node when it detects an error on the bus, and
an OVERLOAD frame to provide an additional delay between suc-
cessive DATA or REMOTE frames. While we concern ourselves, in
this work, with the DATA frame format since it contains the actual
data being transmitted on the bus, our solution can be extended to
consider REMOTE frames with minimal modifications.

Bus contention is resolved using the arbitration field. DATA
frames may have different arbitration field lengths-11 bits for the
Standard Frame (shown in Figure 2), and 29 bits for the Extended
Frame formats (extended frame format is only valid for DATA or
REMOTE frames). These arbitration bits constitute the message
IDENTIFIER and is used by receiver nodes to identify if the message
pertains to them. All nodes which wish to transmit sense the bus for
any ongoing transmission and back off when they detect one. When

Tanmaya Mishra, Thidapat Chantem, and Ryan Gerdes

8N (0sNs8) 15 .

1 a

0 | Identifier |o| 0|0| DLC

Data Field CRC 1] 1| 12 3

" Start of
Frame

Figure 2: CAN 2.0b standard frame format

the nodes sense that the bus is free to use, they send a start of frame
(SOF). All contentions are resolved as the nodes send the arbitration
bits. If a node senses a dominant bit (logic 0) being transmitted as it
is transmitting a recessive bit (logic 1), it loses arbitration and stops
transmission. Receiver CAN controllers utilize message identifier
masks for filtering messages sent out on the bus. The bitmasks are
applied to message identifiers as they are made available on the bus.
If there is no match, the CAN controller stops listening on the bus
until it detects a SOF on the bus. These bitmasks are programmed
and kept in the CAN controller memory for comparison when a
message IDENTIFIER is received.

4 SYSTEM MODEL AND PROBLEM
STATEMENT

We now discuss the real-time task model, threat model, and formally
define the problem in this section.

4.1 Real-Time Task Model

We model all ECU tasks as periodic real-time tasks, each of which is
described by a worst-case execution time (WCET) and a period. The
period of these tasks can be lower-bounded based upon the time
it takes to generate a message for transmission. Without a loss of
generality, we assume that each task in the ECU is responsible for
generating CAN messages with non-overlapping identifiers. That
is, each task has a set of identifiers associated with it and only it.
However, this is not a limitation of our approach and multiple tasks
can share the same identifiers if so required. Further, certain ECUs
may contain emergency tasks. For example, for airbag deployment,
the airbag control module, arguably one of the most time-sensitive
ECUs in a vehicle, may generate an emergency hard sporadic task
to send a message to cut-off fuel to the engine to prevent a fire in
the event of a crash. We consider such a task as having a very high
priority, and which would be able to preempt any currently running
periodic ECU task. We assume that tasks are scheduled using a
priority-based round-robin scheduling algorithm where a higher-
priority task always preempts a lower-priority task and processor
time is equally divided between tasks of equal priority. Such a policy
is selected for ease of implementation and predictability. In fact,
ARM'’s commercial RTOS, Keil RTX5 [21], which we utilize in our
experiments, uses this policy.

4.2 Threat Model

We consider a threat model where the attacker has remote access to
a vehicle ECU. For detecting physical intrusions, such as an attacker
attaching a malicious ECU to the bus, authentication must be done
at the network level or at the receiver, which has already has been
addressed by prior work [7, 15, 25, 26, 34] and is beyond the scope

TEECheck: Securing Intra-Vehicular Communication Using Trusted Execution

of this work. We consider that the attacker has taken advantage
of external network interfaces made available by certain ECUs on
the vehicle (such as WiFi and Bluetooth network interfaces created
by a vehicle’s infotainment unit) and has managed to compromise
task(s) on the ECU. We also assume that the attacker operates only
within the non-secure domain, and an attacker-controlled task can
still make calls to the API made available in the NSC region. We
assume two attacker privilege cases:

(1) Base case - The attacker takes control of task(s) (for example,
through return-oriented programming [29]) on an ECU, is
able to execute arbitrary code under this context, and can
generate messages with identifiers meant for other tasks on
the same, or different, ECU. The attacker, however, is unable
to escalate its privilege level to match that under which
the RTOS is executing. We believe that an attacker can be
restricted to this privilege level since our system utilizes
strict memory access guards using a hardware MPU when
running any unprivileged non-secure code which limits its
ability to force the RTOS to grant it a higher privilege.

(2) Advanced case - This is where the attacker has taken control
of the RTOS and is able to run arbitrary privileged non-
secure code. We believe our work is the first to provide some
security guarantees on the compromised ECU even when
the attacker has control of the RTOS and task code.

4.3 Problem Statement

We aim to design a lightweight, predictable defense mechanism for
securing the CAN bus that achieves the following:

(1) P1: Prevent Masquerade Attacks. The attacker, who has
infiltrated an ECU’s task, tries to masquerade as another
task running in the same ECU or in another legitimate ECU
on the network, e.g., a compromised dashboard entertain-
ment unit may send valid messages to control the engine
RPM or apply the brakes. We aim to ensure that a compro-
mised task can, at the most, only send out messages it was
designed to generate and transmit, without controlling the
actual message content.

(2) P2: Prevent DoS attacks. The attacker tries to launch a
DoS attack by continuously sending messages. We aim to
ensure that under no circumstance can a compromised task
exceed the max rate at which it was designed to send out
messages.

(3) P3: Prevent Snooping. The attacker tries to read messages
intended for other tasks or other ECUs. We aim to remove
any control the attacker has over the actual transmission or
reception of a message. The attacker should only be able to
read messages that were pre-destined for the compromised
task. The attacker should also have no mechanism to know
when another task or ECU sends a message on the bus.

(4) P4: Ensure low latency to allow real-time operation.
Specifically, we aim to ensure that our approach has the
smallest, yet predictable, effect on a task’s worst-case execu-
tion time and that the task structure does not change.

Our proposed technique aims to address each of these problems
for the base case (Section 4.2), and P2 and P4 for the advanced case.
We also partially address P1 and P3 for the advanced case.

RTNS 2020, June 9-10, 2020, Paris, France

5 SYSTEM DESIGN AND OVERVIEW

Traditionally, all application code, including peripheral access, exe-
cutes in unprivileged processor execution mode. Figure 3a show-
cases how such a traditional ECU system might look like. In addition,
there is a supervisory code running in privileged execution mode,
such as an RTOS, and application code runs in RTOS managed
tasks. The RTOS provides scheduling capabilities and task stack
management for context switching.

To support TEECheck, modifications must be made to the tradi-
tional system setup (Figure 3b). Specifically, we consider a Trust-
Zone equipped microcontroller. The RTOS and application code
remain in the non-secure domain. We do not need to change the
task code structure, other than replacing the CAN driver and trans-
mission code with calls to utilize TEECheck. The task code calls
TEECheck’s request_for_transmission (Section 6.1) and
request_for_reception (Section 6.2) NSC functions, for trans-
mission and accessing received messages, respectively. It must be
noted that moving the entire RTOS into the secure region defeats
the purpose of using TrustZone, since the secure domain code has
unrestricted access to the memory space, only the smallest amount
of code should be kept in the secure domain, to reduce the possibil-
ity of a vulnerability and, hence, attack surface. Further, by keeping
only TEECheck and the CAN controller driver in the secure domain,
we force every call to the CAN peripheral to utilize TEECheck.

The RTOS is augmented with access to the non-secure domain’s
MPU which is loaded with task-specific access rights on every con-
text switch. All peripherals (except CAN) necessary for task func-
tionality are partitioned to the non-secure domain. The CAN con-
troller driver must be paritioned into the secure domain such that
it is exclusively accessible to TEECheck. All application code must
utilize TEECheck’s NSC functions (request_for_transmission
and request_for_reception) to access the CAN bus, as discussed
above. While a system timer is required by the RTOS for scheduling
tasks, the secure domain requires one more timer. Considering our
experimental testbed’s (Section 7.1) microcontroller has four other
timers, we believe this is a reasonable requirement.

It must be noted that the RTOS must be augmented with func-
tionality to manage the per-task secure stack. Since we consider
that every task generates CAN messages which are then transferred
to and transmitted from the secure domain, stack management must
be present for secure domain function calls to allow for safe context
switching during task scheduling. Fortunately, most commercial
RTOS that we surveyed for our experimental setup, which adver-
tise official support for TrustZone, already provide an extensible
mechanism for the RTOS to manage each task’s secure stack.

6 TEECHECK : A TEE BASED CAN MESSAGE
CHECKER

We now present our TEE based defense mechanism that leverages
the new system design (Section 5) to address the problems stated
in Section 4.2. TEECheck is built on two components:

(1) Transmission: TEECheck uses a two-stage pipeline, one
stage for message source verification and another for mes-
sage frequency enforcement.

(2) Reception: TEECheck does not allow ECUs direct access
to any messages which pass the CAN controller message

RTNS 2020, June 9-10, 2020, Paris, France

ECU utilizing Generic Microcontroller
[T T T]
Task Task Task
A B c
Peripheral CAN
Drivers Controller
Sensors | | Driver P CAN
& Controller
Actuators
RTOS |
(2)

Tanmaya Mishra, Thidapat Chantem, and Ryan Gerdes

ECU utilizing TrustZone equipped Microcontroller

Non-S Non-S Secure
Sensors |1, [Papheralbrvers] | Callable
Actuators Rate
1| request for_ Limiting
transmission
Request CAN CAN
Seurce Controller Controller
Driver
| | request for_ Received
i Data
[mpu Je—]keystore|
L = | =

Figure 3: (a) Regular ECU system and (b) ECU system utilized for TEECheck

filtering stage and which are made available for reading.
TEECheck verifies the identity of the requesting task before
it forwards the message from the reception buffer.

Please note that we address P4 of our problem statement (Sec-
tion 4.3), by designing TEECheck to work as a set of sequential
function calls with no waiting to (1) reduce the impact on a task’s
WCET and (2) keep the task’s structure unchanged.

6.1 Transmission

While problem P3 of our problem statement (Section 4.3) is ad-
dressed by the reception scheme, the transmission scheme is de-
signed to solve problems P1 and P2. The transmission scheme
leverages our proposed system (Section 5) to prevent an attacker
from masquerading as another task or ECU, as well as from over-
whelming the bus (launch a DoS attack). Stage 1 details our message
source verification scheme. Stage 2 provides details on limiting the
rate of messages that are sent out to the CAN controller.

6.1.1 Stage 1: Source Verification. Stage 1 implements a source ver-
ification scheme to eliminate the possibility of a masquerade attack.
It utilizes the strict partitioning of the TrustZone to verify the source
of a message transmission request. The original system shown in
Figure 3a, while simple, is flawed from a security perspective. Any
misbehaving task can generate messages on behalf of other tasks or
even other ECUs in the network. Further, currently available RTOS
such as Keil RTX5 (which we use in our experiments in Section 7)
do not mediate access to device drivers like general purpose OS
such as Linux. Rather, the RTOS provides memory management
and scheduling capabilities while device access and manipulation
(such as access to the CAN controller) is accomplished within the
task code. Since the tasks have direct access to the CAN controller,
they can simply queue spoofed messages for transmission. How-
ever, the TrustZone provides a strong access control mechanism
for peripherals. Shifting peripheral access into the TrustZone while
keeping the tasks in the non-secure domain provides us with the
opportunity to control data entry into and out of the secure do-
main. Under the assumptions of our threat model, the TrustZone
interface is the last point at which the attacker still has control over
the data. We, thus, propose building a task verification stage at the
TrustZone interface before admitting data for transmission on the
CAN bus. Every task requesting for transmission must first pass

this verification stage on a message-by-message basis or else the
message is immediately dropped.

We now discuss the implementation of the verification stage. As
noted in the system overview presented in Section 5, the RTOS,
which controls the MPU, runs as the privileged code while the tasks
run in unprivileged mode. Any access to memory locations that
are not explicitly marked as accessible by a non-secure task leads
to a hard fault generation (a high priority interrupt originating in
hardware that halts system execution and requires human inter-
vention to reset the entire system and/or perform cleanup before
continuing).

There are two possible avenues of approach to verify a task. One
mechanism is by querying the RTOS which task is requesting for
CAN access and the other is to build a non-intrusive scheme on
top of the RTOS. While utilizing the former approach can be very
lightweight, it increases our dependence on the RTOS, enforcing
the requirement that the RTOS must not be compromised. How-
ever, if an attacker operates under the advanced case assumption,
such a system is bound to fail immediately. Further, querying the
RTOS requires a dialogue between secure domain code and RTOS,
which requires RTOS modifications. For automotive systems, this
would require expensive re-verification of RTOS functionality and
safety. Instead we propose a verification stage between task code
and secure domain while keeping the RTOS code untouched. A
limitation of the proposed stage 1 is that it still requires certain
RTOS guarantees which causes it to partially fail (explained later)
when considering an attacker operating under the advanced case.
However, our proposed approach works well for a base case at-
tacker, and being largely RTOS independent, provides a platform
for future work to address all problems for the advanced case while
still providing performance improvements over related work.

A detailed overview of the steps in the verification stage is pre-
sented in Figure 4a. We verify the origin of each request by comput-
ing and then verifying an HMAC on the message data. HMAC, or
hash-based message authentication codes [20], are cryptographic
algorithms that take an arbitrary length input and produce a fixed-
length output by utilizing a secret key. Only entities possessing the
key can generate the same output from a given input, assuming
that the HMAC is well designed. We utilize HMACs to verify that a
message originates from the correct task. Applying our mechanism
to authenticating REMOTE frames, the resultant mechanism would

TEECheck: Securing Intra-Vehicular Communication Using Trusted Execution

ECU utilizing TrustZone equipped Microcontroller

Non-Secure Non-Secure Secure
Callable
Stage 2
Task (Fig. 4b)

- .
HMAC, . (Data) [rop |

T | | request for_ No CAN

1 Driver

=
| rros | =

(a) Stage 1

RTNS 2020, June 9-10, 2020, Paris, France

ECU utilizing TrustZone equipped Microcontroller

CAN [,
Controller

Non-Secure sl
Non-Secure Callable
No
Time Drop
| | request for_ | |

CAN
Controller

(b) Stage 2

Figure 4: (a) Source verification using HMAC (b) Rate limiting messages based on per-task last transmission time

require a minor modification such that it follows the same authen-
tication steps as that in the reception scheme which we detail in
Section 6.2, where a counter is utilized instead of the message data.

Authentication is done by keeping copies of a table of keys, one
key per task, in both secure and non-secure domains. The key table
consists of the task identifier and its associated key. An MPU is
utilized to restrict a task to access only its designated table entry.
We load the MPU during every task context switch with the task-
specific address masks such that the task can (i) read its task-specific
key-table entry, (ii) read and execute its code section (iii) read and
write to its stack in RAM, (iv) call relevant RTOS API, and (v) call
TEECheck. Note that, loading the MPU only takes a few clock cycles.
The address mask is applied to every memory operation and takes
a single cycle due to the MPU being wired-logic hardware. 2

The key table can be generated and stored in flash during ECU
deployment. Alternatively, a small procedure can be added during
RTOS initialization to regenerate the keys and store a copy in both
key tables. An example mechanism of key regeneration could be
where the RTOS requests the secure domain code for a fresh set
of keys. The secure domain code generates the new keys using a
random number generator, saves it to the secure domain table, and
forwards it to the RTOS for storage on the non-secure side. Con-
sidering the base case assumptions, regenerating the keys during
RTOS initialization ensures that the MPU is able to hide them be-
fore any non-secure task is allowed to run. The task utilizes its key
to generate an HMAC based on the data that it needs to transmit.
It then calls the request_for_transmission function and passes
the message pointer, the generated HMAC tag pointer, and the
task identifier. Once code execution enters the secure domain, the
control is no longer in the hand of the attacker. We read the value of
the generated HMAC, look up the key copy from the secure domain
key table based on the advertised task identifier, and regenerate
the HMAC based on the data to be transmitted in the secure do-
main. Since we target the CAN bus, the data size is assumed to be
8 bytes. While we do not have any specific requirements regarding
the HMAC algorithm, utilizing lightweight algorithms (such as
Chaskey [22]) built for small data sizes is advised. Once the task
identifier is validated, a CAN message identifier is assigned based
on it. In case of the advanced case there is only a partial failure

?Loading the MPU is the only guarantee required of the RTOS and we aim to remove
this dependency in future work.

of verification stage as the key tables contain identifiers only for
tasks meant to run on the ECU. Even if an attacker controls the
RTOS, they cannot send out a message which should originate from
a different ECU. While we cannot control the actual data, short of
recomputing the data in the secure domain, we limit the attacker
to only the compromised task and its related message.

6.1.2 Stage 2: Rate Limiting. We introduce stage 2 of the transmis-
sion scheme where we rate limit each task’s message transmission
to address P2. Since this stage is entirely within the secure domain,
it works equally well for both threat model cases. The overview
of this stage is presented in Figure 4b. While utilizing the HMAC
scheme in stage 1 prevents a task from sending out false messages
on behalf of another task, the attacker could continuously send out
valid HMAGC:s to the secure domain to pass stage 1 and force the
secure domain to send messages out onto the bus, keeping the bus
as busy as possible. While there have been techniques presented in
prior work to detect the occurrence of a DoS attack and shut down
the offending ECU, these mechanisms are reactive in nature and
can still disrupt the CAN bus, albeit for short periods of time. We
wish to prevent a DoS attack proactively before the bus is affected.
Fortunately, since messages are usually generated in a periodic
manner inside a vehicle, a system designer is aware of the maxi-
mum frequency at which a legitimate task generates messages. We
utilize this knowledge to create a per-task rate limiter. Our rate
limiting scheme is similar to the more sophisticated mechanism
employed in the per-core queue in Carousel [28], to reduce space
and computation time. We utilize the hardware timer partitioned
to the secure domain to create periodic time ticks. The timer counts
to the desired period and generates an interrupt. The interrupt
handler records the number of ticks. Utilizing interrupts allows for
asynchronous operation. While deciding the period value is left to
the designer, an example would be to set it to the greatest common
divisor of all message periods. For tasks that generate messages
of varying frequencies, the worst-case frequency can be used and
finding an optimal rate limiter is left for future work. Along with
the key table copy, the tick value at the time when the last message
was accepted for transmission for the relevant task identifier is
also recorded. Stage 2 checks the current tick value, the previous
transmission acceptance tick value and the maximum frequency of
the task. If the frequency is higher than the maximum allowed, the
message is dropped. Else, it is forwarded for transmission.

RTNS 2020, June 9-10, 2020, Paris, France

ECU utilizing
Non-Secure Non-Secure Secure
Callable
Task | gyffer [+ II Forward Data |.— Data

HMAC, , (Count)

PU

Reception
Interrupt

L| request for_ ||

reception CAN

7 CAN
%// HMACi gy (K<) Driver |[Lcontroller
" i

o

Task I

Figure 5: TEECheck Reception scheme
6.2 Reception

The reception scheme (Figure 5) addresses P3 of our problem state-
ment (Section 4.3). The reception scheme aims to allow tasks to
access only those messages with identifiers that belong to them.
This prevents a compromised task from snooping for messages to
gather sensitive information about the status of the vehicle.

Messages are accepted by the CAN controller when they pass
the CAN filtering as described in Section 3.2. The filter masks can
only be changed by secure domain code since the CAN peripheral
is memory-mapped exclusively into secure domain, preventing
any non-secure domain code from modifying these masks. This
ensures that only messages intended to be received by the ECU, are
accepted by the controller. By itself, this limits the attacker to only
messages that are to be received by the ECU with zero additional
overhead, partially fulfilling the requirements of even the advanced
case. All messages are handled and stored in a table along with
the designated receiving task identifier asynchronously via a high
priority interrupt handler. Older values are always overwritten,
keeping the contents of the table fresh.

The reception scheme is similar to stage 1 of the transmission
scheme. While it would be possible to simply share the task-specific
key (made available by the MPU) with the secure domain to as-
certain task identity, if an attacker manages to brute-force the
correct victim task’s key value, the attacker could access every
message intended for the victim task. Instead, we utilize a per-task
counter kept in the secure domain. Every task must first request its
counter by supplying its task identifier, then generate the HMAC
tag based on this counter and its specific key and then pass the
generated tag back to the secure domain for verification using the
request_for_reception TEECheck NSC function. Regardless of
whether task verification passes or fails, the counter is always in-
cremented to prevent an attacker from brute-forcing the correct
HMAC tag for a constant input (counter value). Since differentiation
between tasks on the ECU requires the MPU, this scheme will fail
under the advanced case and will be addressed in future work.

Based on the verified task identifier, the corresponding message
from the message table is copied to the designated non-secure
location pointer passed to the request_for_reception after the
location is verified as belonging exclusively to the task. For example,
an HMAC could be generated from the task key and a nonce during
the key refresh phase at system bootup. The task must then write
that value to the pointer location passed to the secure domain,
which verifies it before overwriting the location with message data.

Tanmaya Mishra, Thidapat Chantem, and Ryan Gerdes

Table 1: Single task running at highest frequency (RL - Rate
Limiting, CAN - CAN controller transmission time)

Test Avg (us) | Med (us) | Max (us) | Min (us)
HMAC-NS (Chaskey) | 223 227 229 185
HMAC-S (Chaskey) 247 247 259 242
HMAC-S + RL 254 253 265 248
HMAC-S + RL + CAN | 368 357 400 355

7 EXPERIMENTATION

We now provide details on our experimental testbed and results.
We run different loads on our testbed to gauge the overhead and
predictability of utilizing TEECheck. We also apply TEECheck to a
well known automotive benchmark as a case study.

7.1 Experimental Setup

Our experimental testbed consists of a Nuvoton NuMaker PFM-
M2351 development board [1]. It uses Nuvoton’s M2351KIAAE
implementation of ARM Cortex-M23, based on the ARMv8-M base-
line architecture (the least powerful ARMV8-M variant) and has 512
KBytes and 96 KBytes of on-board flash memory and RAM, respec-
tively. The microcontroller supports separate MPUs for secure and
non-secure domains, an on-board CAN 2.0b peripheral, and four
general purpose hardware timers. We use ARM’s Keil RTX5 [21],
an automotive functional safety compliant (ISO 26262) RTOS which
provides a convenient API for real-time data logging. Our testbed’s
operating frequency is 12 MHz which allows easy collection of
real-time runtime data via the debugger. While the ARM Cortex-R
series provides similar operating frequencies as vehicle ECUs (>
100 MHz), we cannot use them as they do not yet support ARM
TrustZone.

Since we are not concerned with network-level authentication
techniques in this work, we configure the CAN controller to run in
Loopback mode, where all transmitted messages are routed back to
the controller’s reception interface. We enable loading of the MPU
in Keil RTX5 for every task context switch. For our experiments,
we utilize the ISO standardized Chaskey [22] lightweight HMAC
algorithm which is specifically designed for 32-bit microcontrollers
and small data sizes. Please note that we use a software HMAC
implementation to show a worst-case overhead for our approach. In
the case where a hardware-accelerated HMAC is used, our overhead
will further reduce since hardware-accelerated HMAC are known
to take less than 100 cycles per computation. Each data point shown
in the tables below is generated from 10 experiments due to space
limitations for storing timestamps on board in real-time.

7.2 Results

We now conduct experiments considering different workloads.

7.2.1 Single task transmitting at highest frequency. The first work-
load consists of a single task running at the highest possible fre-
quency (constantly looping). This is to simulate a situation where
the processor never idles, e.g, an ECU that continuously gathers
sensor data and sends it out to a central ECU. We present the results
in Table 1. Our experimental data shows that when we utilize a
secure domain call to generate the HMAC in the secure domain, the
entire operation takes the same time as generating the HMAC in
the non-secure domain plus the domain switch overhead. The rate

TEECheck: Securing Intra-Vehicular Communication Using Trusted Execution

Table 2: Single task running at highest frequency with recep-
tion. TEECheck call overhead

Test Avg (us) | Med (us) | Max (us) | Min (ps)
Counter request | 10 10 11 7
Reception 269 270 271 263
Transmission 373 357 404 356

limiting stage is very lightweight, only taking an additional 7 us on
average. It should be noted that we do not consider reception for
these set of results to remove the overhead that could be caused by
the CAN reception interrupt. Finally, we also show that the call to
the CAN controller for data transmission takes an additional 114 us
for a total average of 368 us. Our TEECheck Transmission scheme,
thus takes a total of 477 us (223 us + 368 us - 114 us) on average over
the base case of providing access to the CAN controller directly
to the task. On realistic ECU hardware, our overhead would scale
down to 50ps making it extremely lightweight since ECUs send out
messages at intervals of milliseconds or higher [19].

7.2.2 Single task transmitting at the highest frequency with reception.
We now enable the CAN controller loopback in the same setup as
that used in Section 7.2.1 to test the reception overhead. While the
interrupt handler runs asynchronously to store the received data
in the intermediary data reception table, the TEECheck Reception
scheme first checks the task identifier before copying the data
to the task’s allocated reception space. Results for the reception
scheme are presented in Table 2. Requesting the counter value takes
about 10 us. Results show a 1% difference in transmission overhead
from that shown in Table 1. As expected, the results for the call to
TEECheck’s reception scheme are similar to the first stage of the
transmission scheme with some additional overhead (15 us) that can
be attributed to the additional data copy from the secure domain
data reception table to the non-secure domain memory address.
While our transmission overhead is provided for 8 bytes, We
also provide results for transmitting different sizes of data, from 1
to 7 bytes in a CAN frame in Table 3. Although the HMAC utilizes
zero-padding to account for smaller message sizes, the data shows
that the overhead for passing the data to the CAN controller is
negligible, leading to nearly the same time taken for that when
transmitting 8 bytes. Since the behavior of reception and transmis-
sion schemes and overhead are so similar, we concentrate on the
(heavier) transmission scheme overhead for the rest of this section.

7.2.3 3 tasks - 1 legitimate, 1 attacker and 1 idle. We now simulate
ECU with two tasks, one of which has been compromised. A third
idle task runs when both of the other two tasks are not ready to run.
A priority-based round-robin scheduling mechanism is used which
provides equal time to tasks of the same priority and preempts a
currently running task if a task with higher priority arrives. All 3
tasks have the same priority. The legitimate task’s period is set to
1ms and is always allowed to send a CAN frame. The attacker task
does not follow any periodicity and sends out messages whenever
it is provided with CPU time. The rate limiting for the attacker
task is kept in such a manner that the messages from that task
are dropped on every alternate call. Results show that the average,
median, maximum and minimum TEECheck call overhead of the
legitimate task are 369us, 364ps, 405us and 362ys, respectively.
This shows that the average time for calling TEECheck for secure

RTNS 2020, June 9-10, 2020, Paris, France

Table 3: Transmitting different message sizes

No. of bytes | Avg (us) | Med (us) | Max (us) | Min (us)
1 368 256 298 351
2 368 356 398 351
3 369 357 399 352
4 370 357 400 353
5 366 358 398 352
6 367 358 398 354
7 367 358 398 354

domain processing from the legitimate task remains the same, with
a slight increase in the minimum time to account for the overhead
due to task switching. In addition, the overhead is negligible even
when the attacker has the same priority as a legitimate task and
utilizes as much CPU time as possible. Due to the limitations of the
Keil RTX5 scheduler, we do not show the results of a higher-priority
attacker task since the scheduler would always allow the higher-
priority task to run if it is ready to run, impeding the operation
of the lower-priority, legitimate task. Modifying the scheduler to
deal with such situations is out of the scope of our work. However,
regardless of task priority, no task can launch a DoS attack on the
CAN bus due to our rate limiting.

7.2.4 4 tasks - 1 emergency, 1 legitimate, 1 attacker and 1 idle. We
extend the system setup for the experiment in Section 7.2.3 with
an emergency task. We consider a sporadic emergency task, with a
minimum inter-arrival time of 3 ms, so as to allow easy gathering
of the event data while ensuring that the legitimate task meets its
deadlines. Results show that the average, median, maximum and
minimum TEECheck call overhead of the emergency task are 374ys,
370us, 408pus and 367ys, respectively. There is a slight increase in
the overhead by 5 s from the previous cases. This is to be expected
as the emergency task is activated frequently when the other 2
tasks have already entered the secure domain, requiring tear-down
of both secure and non-secure domain stacks before switching to
the emergency task.

7.2.5 Real world automotive benchmarks. We now augment a well
know real-world automotive benchmark [19] with TEECheck. We
sort the 9 tasks in a non-increasing order of periods (ranging from
1s to 1ms) and augment each task with a transmission request to
TEECheck. Table 4 provides our results. Here Augmented Tasks
1 is where only the task with 1 second period calls the TEECheck
NSC function and the values are the execution times for that task,
Augmented Task 2 is where both 1 s and 0.5 s tasks call TEECheck
and the values are presented for the 0.5 s task. Augmented Tasks
9 is when all tasks have a transmission request and we report
the execution times for the task with the shortest period. This
experiment confirms that TEECheck incurs a predictable overhead
on the highest frequency augmented task’s execution time even
when scheduled in a round-robin (with same priority) fashion in
the presence of other tasks calling TEECheck. When disregarding
TEECheck’s and CAN controller overheads (477ps and 144ys), the
values presented here exceed the actual task execution time by
only 30-90 ps. This is likely because TEECheck overhead brings
task execution time at-par with the period of the higher frequency
tasks, which interfere with another task’s execution every time
they become ready to run, and due to interrupts from the CAN
controller. On realistic ECU hardware, TEECheck’s overhead for

RTNS 2020, June 9-10, 2020, Paris, France

Table 4: Automotive benchmark with increasing number of
tasks with TEECheck

Augmented Tasks | Avg (us) | Median (us) | Max (us) | Min (us)
1 677 692 858 618

2 660 623 776 587

3 1087 1093 1280 1017

4 756 742 895 701

5 978 1007 1092 895

6 1010 1024 1131 912

7 766 766 960 690

8 680 654 874 648

9 666 646 827 615

this benchmark is <60 ps. Please note that we present pessimistic
results where every task calls TEECheck as we do not know which
tasks, in reality, require CAN access.

8 ANALYSES

We now provide security and real-time analyses.

8.1 Real-Time Analysis

We first analyze the real-time properties of our approach in relation
to P4 in our problem statement. Considering our new system archi-
tecture presented in Section 5, TEECheck simply acts as sequential
function calls without additional buffers or other mechanisms that
could change the nature of the code flow to affect the task model. As
such, TEECheck can simply be modeled as a constant-time overhead
that must be added to a task’s worst-case execution time. Note that
this overhead is only applicable to tasks which interact with the
CAN bus. The overhead is constant since HMAC generation time
on a given length of input data (8 bytes for CAN) is constant and
the rate limiting stage is an arithmetic filter that always compares
two values: the previous message transmission time and the cur-
rent time. Our experimental results based on different system setup
scenarios, presented in Section 7, verify our analysis. They show
almost constant time overhead with minimal variation regardless
of system load. The slight variance in data is due to the interrupts
being fired by the CAN controller when it receives the looped-back
messages. Our approach also shows negligible variation in the case
of emergency (sporadic) tasks such as airbag deployment.

8.2 Security Analysis

We now evaluate each stage of the transmission and reception
schemes for their effectiveness in addressing our problem state-
ment detailed in Section 4.3. Stages 1 and 2 of the transmission
scheme are designed to address the problems P1 and P2, respec-
tively. The efficacy of stage 1 is based on the assumption of HMAC
unforgeability. An attacker could either brute force every HMAC
tag value until it matches a valid HMAC tag for the data that it
wishes to send, or generate key possibilities for creating the HMAC
valid for the data that it wishes to send. Brute-forcing an HMAC
algorithm with an n-bit key takes, on average, 2" ' HMAC calcula-
tions. Considering an HMAC algorithm (such as Chaskey which we
utilized as a part of our experimental setup) which requires a 128
bit key and generates a 128 bit output tag, the number of tries, on
average, for each of the two types of attack would be 2127, While the
second attack mechanism is much slower, since the attacker needs

Tanmaya Mishra, Thidapat Chantem, and Ryan Gerdes

to generate the HMAC for every possible key, with a total overhead
of about 470 us (223 us for HMAC tag generation in non-secure
domain and 247 us for the HMAC tag generation with call to the
secure domain), the first attack mechanism would take roughly half
the time since the attacker could simply use a counter and pass its
value to the secure domain as an HMAC instead of running the
HMAC algorithm in the non-secure domain. However, in either
case, the verification HMAC generation in the secure domain code
cannot be bypassed since accessing the CAN controller must go
through TEECheck which always verifies the HMAC first. As such,
this makes the attack practically impossible.

Further, the attacker is limited to a short window for guessing
the correct HMAC. This is due to the rate limiting stage 2. Since
the time-sharing between ECU tasks is enforced by the RTOS, it is
guaranteed that the victim task will get to execute. Considering a
very basic setup scheduled under the round-robin execution policy,
where all tasks have equal priority and context switch is enforced
after the same amount of time 7 for every task, and considering the
time difference § between messages for the victim task running at
highest frequency (that is, a task which is constantly looping over
the HMAC generation and call to the request_for_transmission
NSC function), the victim task (in a system with n tasks) will send
out messages every Msg_Send which is computed as:

Msg_Send=6+(n—-1) -1 (1)

While an attacker may have prior knowledge of this value, the
exact time of the previous transmission during vehicle operation
by the victim task cannot be guessed easily, especially because
our system prevents tasks from snooping the bus. The attacker
must guess during Msg_Send for successful transmission else even
a correct guess will be blocked by stage 2. An intelligent attacker
could try to observe execution time differences to detect which stage
caused transmission failure. This would require a high resolution
timer and can be mitigated by partitioning unused timers to the
secure domain. Due to the vastly different execution times of the
stages, it is recommended to keep stage 1 and stage 2 in their current
positions to prevent an attacker from using the system tick timer (if
timer frequency is sufficiently high) to differentiate between stages.

The analysis for the reception scheme is similar to stage 1 of
the transmission scheme. The reception scheme is aimed at solv-
ing problem P3 by making it difficult for an attacker to snoop on
messages intended for other recipients on the same ECU. Since the
attacker has no control over the counter value, the attacker cannot
practically perform a replay attack or brute-force the HMAC key,
especially if a key refresh occurs on every system reboot.

9 CONCLUSION

We designed a new TEE based architecture for ECUs that effec-
tively partitions the CAN controller from the rest of the ECU code.
We presented TEECheck, an on-device TEE based defense mecha-
nism to prevent masquerade attacks, DoS, and information leakage.
We implemented our proposed architecture on an actual device, a
TrustZone enabled ARM Cortex-M23 based Nuvoton M2351 and
showed that our technique has very low overhead (maximum of
494 us and 500 us for transmission and reception respectively), and
is very predictable showcasing negligible (around 1%) variance in
overhead regardless variations in, and types of, system loads.

TEECheck: Securing Intra-Vehicular Communication Using Trusted Execution

ACKNOWLEDGMENTS

This work was supported in part by NSF under grant numbers
1650540 and 1618979, and by the Commonwealth Cyber Initiative,
an investment in the advancement of cyber R&D, innovation and
workforce development in Virginia. For more information about
CCI, visit cyberinitiative.org.

REFERENCES

(1]
(2]

[9

=

[10

[11]

[12

[13]

[14]

[15]

[16

[17]

[18

[19]

[20]

)
N =

[23

2019. NuMicro M2351 series — a TrustZone empowered micro-controller series
focusing on iot security.

2019. Renesas provides chips for Toyota. https://can-newsletter.org/engineering/
applications/171114_17-4_renesas-provides-chip-for-toytas-self-driving-
cars_renesas.

Sherif Aly. 2017. Consolidating AUTOSAR with complex operating systems (AU-
TOSAR on Linux). Technical Report. SAE Technical Paper.

ARM. 2009. Security technology building a secure system using TrustZone
technology (white paper). ARM Limited (2009).

Ahmad Atamli-Reineh, Ravishankar Borgaonkar, Ranjbar A Balisane, Giuseppe
Petracca, and Andrew Martin. 2016. Analysis of trusted execution environment
usage in Samsung KNOX. In Proceedings of the 1st Workshop on System Software
for Trusted Execution. ACM.

Malek Ben Salem. 2012. Towards effective masquerade attack detection. Ph.D.
Dissertation. Columbia University.

Donghoon Chang. 2018. CAN-FD-Sec: Improving Security of CAN-FD Protocol.
In Security and Safety Interplay of Intelligent Software Systems: ESORICS 2018
International Workshops, ISSA 2018 and CSITS 2018, Barcelona, Spain, September
6-7, 2018, Revised Selected Papers. Springer, 77.

Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Ta-
dayoshi Kohno, et al. 2011. Comprehensive experimental analyses of automotive
attack surfaces.. In USENIX Security Symposium, Vol. 4. San Francisco, 447-462.
Kyong-Tak Cho and Kang G Shin. 2016. Fingerprinting electronic control units
for vehicle intrusion detection. In USENIX Security Symposium. 911-927.
Kyong-Tak Cho and Kang G Shin. 2017. Viden: Attacker identification on in-
vehicle networks. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 1109-1123.

Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016, 086 (2016), 1-118.

Mohammad Farsi, Karl Ratcliff, and Manuel Barbosa. 1999. An overview of
controller area network. Computing & Control Engineering Journal 10, 3 (1999),
113-120.

Mahsa Foruhandeh, Yanmao Man, Ryan Gerdes, Ming Li, and Thidapat Chantem.
2019. SIMPLE: Single-Frame based Physical Layer Identification for Intrusion
Detection and Prevention on In-Vehicle Networks. In Annual Computer Security
Applications Conference.

Simon First, Jirgen Mossinger, Stefan Bunzel, Thomas Weber, Frank Kirschke-
Biller, Peter Heitkdmper, Gerulf Kinkelin, Kenji Nishikawa, and Klaus Lange.
2009. AUTOSAR-A Worldwide Standard is on the Road. In 14th International
VDI Congress Electronic Systems for Vehicles, Baden-Baden, Vol. 62. 5.

Bogdan Groza, Stefan Murvay, Anthony Van Herrewege, and Ingrid Verbauwhede.
2012. Libra-can: a lightweight broadcast authentication protocol for controller
area networks. In International Conference on Cryptology and Network Security.
Springer, 185-200.

Yutian Gui, Ali Shuja Siddiqui, and Fareena Saqib. 2018. Hardware Based Root of
Trust for Electronic Control Units. In SoutheastCon 2018. IEEE, 1-7.

Florian Hartwich et al. 2012. CAN with flexible data-rate. In Proc. iCC. Citeseer,
1-9.

Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, et al. 2010. Experimental security analysis of a modern automobile. In
2010 IEEE Symposium on Security and Privacy. IEEE, 447-462.

Simon Kramer, Dirk Ziegenbein, and Arne Hamann. 2015. Real world automo-
tive benchmarks for free. In 6th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS).

Hugo Krawczyk, Ran Canetti, and Mihir Bellare. 1997. HMAC: Keyed-hashing
for message authentication. RFC Editor (1997).

Arm Ltd. 2019. Keil RTX5.

Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart Pre-
neel, and Ingrid Verbauwhede. 2014. Chaskey: an efficient MAC algorithm for
32-bit microcontrollers. In International Conference on Selected Areas in Cryptog-
raphy. Springer, 306-323.

Anway Mukherjee, Tanmaya Mishra, Thidapat Chantem, Nathan Fisher, and
Ryan M. Gerdes. 2019. Optimized trusted execution for hard real-time applications
on COTS processors. In RTNS ’19.

RTNS 2020, June 9-10, 2020, Paris, France

[24] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van Her-

rewege, Christophe Huygens, Bart Preneel, Ingrid Verbauwhede, and Frank
Piessens. 2013. Sancus: Low-cost trustworthy extensible networked devices
with a zero-software trusted computing base. In USENIX Security Symposium.
479-498.

Stefan Niirnberger and Christian Rossow. 2016. —vatican—vetted, authenticated
can bus. In International Conference on Cryptographic Hardware and Embedded
Systems. Springer, 106-124.

Andreea-Ina Radu and Flavio D Garcia. 2016. LeiA: A lightweight authentication
protocol for CAN. In European Symposium on Research in Computer Security.
Springer, 283-300.

Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. 2015.
Trusted execution environment: what it is, and what it is not. In 2015 IEEE
Trustcom/BigDataSE/ISPA, Vol. 1. IEEE, 57-64.

Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Carlo Contavalli, Amin
Vahdat, et al. 2017. Carousel: Scalable traffic shaping at end hosts. In Proceedings
of the Conference of the ACM Special Interest Group on Data Communication. ACM,
404-417.

Hovav Shacham et al. 2007. The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86).. In ACM conference on Computer
and Communications Security. 552-561.

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
et al. 2016. Sok:(state of) the art of war: Offensive techniques in binary analysis.
In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 138-157.

Jo Van Bulck, Jan Tobias Mithlberg, and Frank Piessens. 2017. VulCAN: Effi-
cient component authentication and software isolation for automotive control
networks. In Proceedings of the 33rd Annual Computer Security Applications Con-
ference. ACM, 225-237.

Anthony Van Herrewege, Dave Singelee, and Ingrid Verbauwhede. 2011.
CANAuth-a simple, backward compatible broadcast authentication protocol
for CAN bus. In ECRYPT Workshop on Lightweight Cryptography, Vol. 2011.
Kizheppatt Vipin. 2018. CANNoC: An open-source NoC architecture for ECU
consolidation. In 2018 IEEE 61st International Midwest Symposium on Circuits and
Systems (MWSCAS). IEEE, 940-943.

Qiyan Wang and Sanjay Sawhney. 2014. VeCure: A practical security framework
to protect the CAN bus of vehicles. In 2014 International Conference on the Internet
of Things (IOT). IEEE, 13-18.

Xuhang Ying, Giuseppe Bernieri, Mauro Conti, and Radha Poovendran. 2019.
TACAN: Transmitter authentication through covert channels in controller area
networks. In Proceedings of the 10th ACM/IEEE International Conference on Cyber-
Physical Systems. ACM, 23-34.

Joseph Yiu. 2015. ARMv8-M architecture technical overview. ARM WHITE PAPER
(2015).

Tobias Ziermann, Stefan Wildermann, and Jiirgen Teich. 2009. CAN+: A new
backward-compatible Controller Area Network (CAN) protocol with up to 16x
higher data rates. In Proceedings of the Conference on Design, Automation and Test
in Europe. European Design and Automation Association, 1088-1093.

https://can-newsletter.org/engineering/applications/171114_17-4_renesas-provides-chip-for-toytas-self-driving-cars_renesas
https://can-newsletter.org/engineering/applications/171114_17-4_renesas-provides-chip-for-toytas-self-driving-cars_renesas
https://can-newsletter.org/engineering/applications/171114_17-4_renesas-provides-chip-for-toytas-self-driving-cars_renesas

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 ARM TrustZone for Cortex-M
	3.2 Controller Area Network (CAN)

	4 System Model and Problem Statement
	4.1 Real-Time Task Model
	4.2 Threat Model
	4.3 Problem Statement

	5 System Design and Overview
	6 TEECheck : A TEE based CAN message checker
	6.1 Transmission
	6.2 Reception

	7 Experimentation
	7.1 Experimental Setup
	7.2 Results

	8 Analyses
	8.1 Real-Time Analysis
	8.2 Security Analysis

	9 Conclusion
	Acknowledgments
	References

