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ABSTRACT
Heterogeneous MPSoCs are being used more and more, from cell-

phones to critical embedded systems. Most of those systems offer

heterogeneous sets of identical cores. In this paper, we propose

new results on the global scheduling approach. We extend funda-

mental global scheduling results on unrelated processors to results

on unrelated multicore platforms, a more realistic model. Every

discussed result is optimal regarding schedulability, and all but one

have a polynomial time complexity. We introduce several methods

to construct the workload assignment taking advantage of this new

model. Thanks to the model, their produced schedule has a limited

degree of migrations. The benefits of those methods are demon-

strated using simulation. We also discuss the practical limitations of

the global scheduling approach on unrelated platforms and argue

that it is still worth investigating considering modern MPSoCs.
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1 INTRODUCTION
1.1 Motivation
In the keynote speech [12] of the 2019 RTNS edition,Marko Bertogna

exposed how heterogeneous architectures found in current and in-

coming safety-critical innovations such as autonomous vehicles

open promising opportunities for the real-time community to bridge

practical application with theoretical aspects. Heterogeneous Mul-
tiProcessor System-on-Chip platforms (MPSoCs) are now widely

spread in most embedded systems domains, from infotainment and

automated driving system in cars to smartphones and drones. These

platforms usually offer several different sets of identical computing

cores, called clusters, and may also contain specific hardware like

specialised processing units (e.g. GPU, NPU) or programmable logic

tiles. The cluster architectures are typically inspired from multicore

architectures and, through a hypervisor, allow a single operating

system (OS) to globally schedule tasks easily and efficiently. Nev-

ertheless on heterogeneous MPSoCs, different clusters may have

different instruction set architectures (ISA), and may host different

OSs. For example, the STM32MP157C-DK2
®

MPSoC from STMicro-

electronics is composed of two clusters. On one hand its Cortex-A7
®

multicore cluster has a Memory Management Unit (MMU ) allow-

ing memory virtualisation, and can host a multi-purpose Linux

OS. On the other hand, its microcontroller Cortex-M4
®

is a single-

core cluster without MMU that can only support lightweight OS

(e.g. FreeRTOS or minimal single process RTOS compliant with the

POSIX 1003.13 PSE51 [1] profile) or be used directly bare metal.

While belonging to the same ARM Cortex
®

family, these cores have

different ISA. Thus, performing a task migration from one cluster to

another requires the task code to be compiled for both types of ar-

chitecture. Moreover, preemption cannot be allowed between every

instruction since the low level instructions are different, and can
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(a) flat platform model (b) unrelated multicore platforms model
Figure 1: Illustration of flat versus clustered platform model

even be executed out of order on some architectures. On these plat-

forms, migrating a task from a cluster to another would therefore

require to determine specific migration points in the code.

This paper is focused on real-time scheduling of a set of tasks.

Each task releases a —potentially— infinite set of jobs which have

the same worst-case execution-time (WCET) on a fictional core.
A fictional core is used as a reference to express core processing

rates. It is modelled so that all tasks may be executed on it. Jobs

must be completed by a given deadline to respect the real-time

constraints. In the literature, a platform is often viewed as “flat”,

as represented in Figure 1(a). In extenso, there is no hierarchy

between cores and all migrations are considered as having the

same cost. This is an abstraction since most modern platforms

are composed of one or several clusters of cores, as represented in

Figure 1(b). Cluster cores are identical, but may differ from one

cluster to another in the case of unrelated multicore platforms. In this
paper, the jobs are executed on a computing platform of unrelated
clusters. Each cluster is characterised by its number of identical
cores, and each task has a specific processing rate on each cluster.

In the literature, multiprocessor systems are generally classified into

three categories [9, 17]. (1) Identical: all the processors are identical
and execute the tasks at the same processing rate; (2) Uniform:

each processor is characterised by a speed, e.g., a processor of

speed 2 executes any task at two times faster than a processor of

speed 1; (3) Unrelated: the processing rate depends on both the

processor and the task. There exists a fourth category: consistent
architecture. This is a particular case of unrelated architecture where
the heterogeneity is consistent. Informally whenever a processor

executes a task faster than the others processors then its also the

case for all other tasks. While this notion was already considered

in the literature, see for instance [5, 14] we provide in Section 2.3 a

formalisation of this kind of architecture.

The scheduler on a multiprocessor platform can be global or
partitioned. In global scheduling, any job may be executed on any

core, i.e. migrate without restriction. By contrast, in partitioned
scheduling each task is assigned to a single core and neither task nor

job migration are not allowed. The multicore cluster model allows

for an intermediary category: in clustered scheduling [9] each task is
assigned to a single cluster and jobs can only migrate between cores

within the cluster. In this paper, we assume a global scheduling
of unrelated multicore platforms The migrations between cores of

the same cluster are defined as intra-cluster migrations while the
inter-cluster migrations correspond to migrations between cores

of different clusters. On most platforms, inter-cluster migrations
require software support and a specific development effort. This

is very costly because of the online execution overhead and time

consuming as it requires specific development effort. Today, popular

scheduler implementations support symmetrical multiprocessing

(SMP) that allows intra-cluster migrations (e.g. the Completely Fair

Scheduler (CFS) of the Linux kernel). They are therefore transparent

to the application developer, and the online overhead generated is

smaller than the inter-cluster migration one.

1.2 State of the art
Partitioned scheduling on heterogeneous platforms is a NP-hard

problem and has been studied in several works [7, 10, 28]. Global

scheduling on heterogeneous platforms, also known as unrelated

multiprocessor platforms, was initiated by the seminal paper [6].

Since then, the global scheduling on unrelated platforms has re-

ceived less attention. This may be due to the fact that hardware

platforms generally do not support inter-cluster migration of tasks,

that may require a full software support. However, global schedul-

ing allows theoretically a full utilisation of the platform. Moreover,

in our case (details will follow: offline scheduling and independent

tasks with implicit deadlines), there exists a polynomial-time fea-

sibility test. In the literature, e.g. in [6, 15], the global scheduling

of unrelated platforms is performed in two phases. All the com-

putations are done offline. First, a workload assignment matrix is

computed. The workload assignment decides which fraction of pro-

cessing capacity of a core has to be assigned to each task. Secondly,

giving this workload assignment, a template schedule is built. The

template schedule is then directly used online.

Recently, MPSoCs with unrelated clusters sharing the same

ISA, like the ARM big.LITTLE
®

architecture, have motivated some

work [15] on the optimal global scheduling. Indeed, sharing the

same ISA makes the inter-cluster migrations more realistic. In the

latter work, the authors adopt a novel strategy, taking into account

the hierarchical nature of the set of clusters. They first focus on

the assignment of tasks to clusters, and then on cores, which limits

the number of inter-cluster migrations. Nevertheless, this method,

called Hetero-Split, is limited to a platform with only two types
of clusters. These two-types platforms also motivated clustered

approach with intra-migration like in [27]. New platforms, inte-

grating more than two types of clusters like the Mediatek Helio

X20
®

are developed. This MPSoC includes three clusters (two fast
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Cortex-A72
®

cores, four middle speed Cortex-A53
®

cores and four

slow Cortex-A53
®

cores) sharing the same ISA with a hardware sup-

port for inter-cluster migration. This revives interest in the global

scheduling of unrelated clusters.

1.3 Contributions and organisation
In this work, we introduce a new model with a hierarchical plat-

form view. To the best of our knowledge, this hierarchical platform

model has only been addressed in the context of optimal global

scheduling with two types of clusters. We take advantage of this

model by proposing several new workload assignment methods

derived from former methods. Those new methods are then tested

by simulation, showing their advantages over the existing method.

These workload assignment methods show a reduced amount of

inter-cluster migrations thus improving their applicability. Finally,

we discuss the gap between the current theoretical approaches to

deal with heterogeneous platforms and the reality.

Section 2 introduces the new model and Section 3 presents the

new workload assignment methods. We then evaluate the perfor-

mances of the newmethods in Section 4, and discuss the practicabil-

ity of global scheduling on heterogeneous platforms in Section 5.

2 TASK AND PLATFORMMODEL
2.1 Task model
The workload is modelled by a set of n periodic tasks Γ � {τi | i =
1, . . . ,n} (the symbol � means is equal by definition to). Each task

τi is defined by two parameters (Ci ,Ti ) where Ci is the worst-case
execution time on a fictional processor —chosen arbitrarily— for

every task, and Ti is the release period. Each task releases a job
every period Ti . The first job of a task is released at t = 0, the kth

at t = k ×Ti and has to complete by (k + 1) ×Ti (tasks are said to

have implicit deadlines). The utilisation of a task τi is ui �
Ci
Ti . It is

defined on a fictional core.

2.2 Platform model
An unrelated multicore platform is modelled by a set Π of Ûm clusters

Π � { Ûπh | h = 1, . . . , Ûm}. Each cluster Ûπh contains Ûmh identical

cores Ûπh � {πh1 , . . . , πh Ûmh
}. A job of τi that is executed on a core

πhk for t time units will progress by Ûri ,h × t units of its execution
time. Within the cluster Ûπh , every core has the same processing

rate Ûri ,h for each task τi . If Ûri ,h = 0, then τi cannot be executed on

the cluster Ûπh , this couple task/cluster is said to be incompatible. A

job of τi is completed when its progress reaches its WCET Ci .

2.3 Consistent clusters
Please find in this section a formalisation of the notion of consistent
clusters. First to be consistent the platform must have a relative
order on the clusters.

Definition 2.1 (Faster cluster). A cluster Ûπk is faster than cluster

Ûπℓ ( Ûπk ≥ Ûπℓ ) if

∀1 ≤ i ≤ n Ûri ,k ≥ Ûri ,ℓ

Now we introduce a tie-breaker to have the notion of the fastest
cluster:

Definition 2.2 (Fastest cluster). Ûπk is defined to be the fastest
processor if k is the smallest index such that ∀1 ≤ ℓ ≤ m Ûπk ≥ Ûπℓ

Wlog (by reordering the clusters) we can assume that Ûπ1 is the
fastest cluster. By repeating the same definition on the remaining

clusters and wlog we can assume, if the platform is consistent, that
Ûπ1 > Ûπ2 > · · · > Ûπm , i.e., we have a total order on the clusters.

Scheduling tasks on a consistent clusters is a particular case of

the unrelated setting but is more general than the uniform setting.

2.4 Assumptions
In this theoretical model, we make the following assumptions. We

consider the time as continuous, and that a job may be preempted

at any time (fluid schedule). The tasks are sequential so they cannot

be executed in parallel. Preemptions and migrations are performed

at no extra cost. Also, a task set is feasible on a given platform if,

and only if, there exists a schedule where every job of every task

can be completed by its deadline.

3 WORKLOAD ASSIGNMENT METHODS
As far as we know, every optimal scheduling method of the litera-

ture [28] for unrelated multiprocessor platforms (from real-time [6]

or operational research [23] areas), starts with a workload assign-

ment phase (made offline). From an input made of tasks parameters

and platform rates, this phase decides the fraction of processing ca-

pacity of each core assigned to tasks. The tasks have to be completed

within their period thanks to this assignment, without overloading

the cores. With the exception of [15], presented in this section to

serve as a comparison for the experiments of Section 4, most of the

existing works have expressed the workload assignment phase as a

LP problem. A LP problem can be solved in polynomial time [20].

The solution of the LP problem is a cluster workload assignment
matrix X = [xi ,h ]

h=1, ..., Ûm
i=1, ...,n where xi ,h is the fraction of a core in

the cluster Ûπh used by a task τi .
It is a well-known fact that intra-cluster migrations are more

costly in terms of time overhead and task programming effort. We

quantify the impact of such migrations by the definition of the

presence of a task on a cluster, introduced in [6]. Formally, a task τi
has a presence on a cluster Ûπh iff xi ,h > 0. The number of presences
ÛPri corresponds to the number of times where τi has a presence in
a cluster: ÛPri � |{xi ,h > 0 | h = 1, . . . , Ûm}|

A task τi will have to migrate between clusters if, and only if,

ÛPri > 1. Therefore, any presence greater than one is a presence in
excess that will generate at least one inter-cluster migration.

In this section, we first formulate the cluster workload assign-

ment as a LP problem and show that it is an exact feasibility test.

This formulation extends the seminal LP problem of [6]. Then, we

present a Mixed-Integer Linear Programming (MILP) formulation

minimising the number of presences of tasks on clusters. Finally,

we present succinctly a method from the literature limited to two

types of clusters that will be experimentally compared to the other

LP-based solutions.

3.1 Workload assignment as a LP problem
Assigning the workload of tasks on clusters can be expressed using

three sets of constraints, defined in LP-Cluster:
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LP 1 (LP-Cluster).

Ûm∑
h=1

xi ,h × Ûri ,h = ui i = 1, 2, . . . ,n (1)

Ûm∑
h=1

xi ,h ≤ 1 i = 1, 2, . . . ,n (2)

n∑
i=1

xi ,h ≤ Ûmh h = 1, 2, . . . , Ûm (3)

Equation 1 ensures that enough processing capacity is allocated

to each task by reserving a processing capacity fraction on each

cluster. Equation 2 constrains the total capacity fraction allocated

to a task to be less than or equal to one. This ensures that the task

can be scheduled without being executed on two cores at the same

time (see Theorem 3.1). Equation 3 states that the used capacity of

a cluster Ûπh is less than or equal to its total capacity, which is the

capacity of its Ûmh cores.

If the LP-Cluster is successfully solved, the xi ,h represent a suc-

cessful cluster workload assignment (or assignment of tasks on

clusters), as stated by Theorem 3.1. To construct a template sched-

ule, our method requires a core workload assignment. Especially,

we aim at minimising the number of cores used. Thus, we derive the

cluster workload assignment by simply filling cores successively

with capacity fractions in ascending order of the task index. In

this manner, an available core is used if and only if there is no

capacity left in the previous core visited. The result is a successful

core workload assignment that we will be able to use to construct

a template schedule.

Theorem 3.1. A system is feasible on the platform if, and only if,
LP-Cluster has a solution.

Proof. First we prove that (i) if there is no solution to the LP,

then the system is not feasible. This will occur if Equation 2 or

Equation 3 are not satisfied. In the first case, there would be at

least one task τi such that

∑ Ûm
h=1 xi ,h > 1. It means that τi must be

executed in parallel which is forbidden in our model of sequential

tasks. In the second case, a cluster Ûπh would need a processing

capacity higher than its total capacity Ûmh .

Now we prove that (ii) finding a solution to this LP problem guar-

antees that the system is feasible. The proof sketch is depicted in

Figure 2. The cluster workload assignment matrixX is of dimension

n× Ûm. Indeed, by construction of the LP problem, it hasn rowswith a
sum of coefficients less than one, and Ûm columns with a sum of coef-

ficients less than Ûmh,h = 1, . . . , Ûm. First, we replace each column h,
corresponding to the task assignment to cluster Ûπh by Ûmh columns,

one for each core, such that the sum of the coefficients on each of

the columns is not greater than one. For the sake of the proof, we

simply consider, on each row i of the new columns k = 1, . . . , Ûmh ,

x ′i ,hk
�

xi ,h
Ûmh

, such that the total capacity fraction allocated to each

task on each cluster is evenly distributed on each of its cores. In

this manner, we obtain a workload assignment matrix on the cores

Xc of dimension n ×M , whereM �
∑ Ûm
h=1 Ûmh is the total number

of cores. On each column, x ′i ,hk
�

xi ,h
Ûmh

represents the capacity

fraction of core πhk allocated to task τi . By construction, since orig-
inally the used capacity of cluster Ûπh to tasks was

∑n
i=1 xi ,h ≤ Ûmh ,

x1,1 . . . x1, Ûm

...
...

...
...

xn,1 . . . xn, Ûm

©­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®¬

Ûπ1 . . . Ûπ Ûm

τ1

...

...

τn

≤ Ûm1
. . . ≤ Ûm Ûm

≤ 1

...

...

≤ 1

X =
Cluster to cores extension

Xc =

x1,1/ Ûm1 . . . x1,1/ Ûm1 x1,2/ Ûm2 . . . x1,2/ Ûm2 · · · · · · x1, Ûm/ Ûm Ûm

...
...

...
...

...

...
...

...
...

...

xn,1/ Ûm1 . . . xn,1/ Ûm1 xn,2/ Ûm2 . . . xn,2/ Ûm2 · · · · · · xn, Ûm/ Ûm Ûm

©­­­­­­­­­­­­«

ª®®®®®®®®®®®®¬

π11 . . . π1 Ûm
1

π21 · · · π2 Ûm
2

· · · · · · π Ûm Ûm Ûm

τ1

...

...

τn

≤ 1 . . . . . . . . . . . . . . . . . . . . . ≤ 1

≤ 1

...

...

≤ 1

Figure 2: Proof sketch for Theorem 3.1

we have on each column for πjk ,
∑n
i=1 x

′
i ,hk

≤ 1 (see Xc on Fig-

ure 2). From this cluster cores workload assignment matrix, we can

easily create a bistochastic matrix B of size (n +M) × (n +M), as

done in [23]. A bistochastic (or doubly stochastic) matrix is a square

matrix of non-negative real numbers, having each of its rows and

columns summing to 1. Formally, ∀i = 1, . . . ,n :

∑n+M
h=1 Bi ,h = 1

and ∀h = 1, . . . ,M :

∑n+M
i=1 Bi ,h = 1. B is constructed as follows:

Xc Bn

BM X t
c

©­­­«
ª®®®¬B �

Bn is a n × n diagonal matrix, such that Bn (i, i) � 1 −∑ Ûm
h=1

∑ Ûmh
k=1 x

′
i ,hk

∀i . The diagonal coefficients of Bn correspond

to the laxity of the task τi , i.e. the fraction of time during which τi
is left idle. BM is aM ×M diagonal matrix, such that BM (hk ,hk ) �
1 −

∑n
i=1 x

′
i ,hk

∀hk . The diagonal coefficients of BM correspond to

the slack of the core πhk , i.e. the fraction of time during which πhk
is left idle. X t

c is the transpose of the core workload assignment

matrixXc , and has a dimensionM ×n. By construction, we obtain a

square bistochastic matrix B of dimension (n+M)×(n+M) express-

ing the fraction of each core that has to be allocated to each task, as

well as the slack of the cores and the laxity of the tasks. Following

the Birkhoff-von Neumann (BvN) theorem, such a matrix can be

decomposed into a convex combination of permutation matrices

A � δ1P1 + δ2P2 + · · · + δkPk [23], where δi is a real coefficient

∈ (0, 1],
∑k
i=1 δi = 1, and Pi is a permutation matrix. A permuta-

tion matrix is a binary square matrix where there is exactly one

1 on each row and each column. This can be seen as a matching

between tasks (rows) and cores (columns). Indeed, one and only

one coefficient Pi (h,k) = 1 means that task on column k will be

assigned to the core of the row h for a duration δi . The assignment
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matrix Xc states that assigning a ratio of x ′i ,hk
of core πhk to task

τi during each of its periods ensures that its jobs will be completed.

However, we need to ensure that a job is never executed on two

different clusters at the same time.

For each time window [t1, tk ), between two successive releases

at times t1 and tk (or deadlines since tasks have implicit deadlines),

we can use the BvN decomposition to create such a schedule. We

use the matching P1 on the time window [t1, δ1 × (tk − t1)), by
definition of a permutation matrix, this matching ensures that a

task is assigned to at most one core in this time windows. Similarly,

we can use the following permutation matrices obtained in the BvN

decomposition, each permutation matrix Pi covering a sub-interval

of duration δi ×(tk −t1). Since by the BvN theorem,

∑k
i=1 δi = 1, we

can completely schedule every task on the interval [t1, tk ), ensuring
that a task is never executed on more than one core at the same

time. This one time unit schedule can then be stretched to fit into

intervals of time delimited by successive task release dates. This

technique is also referred to as deadline partitioning[25]. □

3.2 About linear algebra for scheduling
purposes

Theorem 3.1 shows that finding a solution to LP-Cluster asserts
the feasibility of the system. Moreover, it shows that building a

schedule from a workload assignment matrix is exactly equivalent

to finding a BvN decomposition of this matrix. This result indicates

that linear algebra results could be used to improve the schedule

construction.

One may note that minimising the number of permutation ma-

trices in a BvN decomposition is similar to minimising the number

of scheduling decisions. Indeed, each different permutation matrix

corresponds to a different schedule decision (i.e. which jobs are

executed at a given instant, and on which cores). Taking sched-

ule decisions lead to preemptions and/or migrations (both inter-

or intra-cluster). Therefore, minimising the number of scheduling

points may be a solution to reduce the number of preemption and

migrations. This is an example of optimisation of the template

schedule construction [6, 13, 15].

The next property concerns the complexity of the BvN decom-

position:

Theorem 3.2 (Dufossé 2016 [18]). The problem of deciding if
there is a BvN decomposition of a given doubly stochastic matrix with
k permutation matrices is NP-complete in the strong sense.

Since the decision problem is NP-complete in the strong sense,

the optimisation problem of minimising the number of permutation

matrices in a BvN decomposition is NP-hard in the strong sense.

Thus, optimising the number of scheduling decisions cannot be

done efficiently.

In the remainder, we focus only on modifying the workload

assignment to reduce the number of preemption and migration.

However, using linear algebra techniques to sub-optimally reduce

the number of scheduling decisions will be explored in future works.

3.3 LP-Feas and LP-CFeas
In [6], author presents a LP-Feas, a LP model for assigning the

workload on an unrelated real-time multiprocessor platform. This

work was primarily focused on feasibility, and does not aim at

minimising the number of presences. It is very close to the LP

formulation of the makespan minimisation in job shop scheduling

on unrelated single-core processors given in [23]. In this work, the

model is using a flat hardware representation. To fit our model

notations, we consider a hierarchical hardware with one core per

cluster, i.e. ∀h, Ûmh = 1.

LP 2 (LP-Feas [6]). the workload assignment is solution of the
following LP:

Ûm∑
h=1

xi ,h × Ûri ,h = ui i = 1, 2, . . . ,n (4)

Ûm∑
h=1

xi ,h ≤ ℓ i = 1, 2, . . . ,n (5)

n∑
i=1

xi ,h ≤ ℓ h = 1, 2, . . . , Ûm (6)

Minimise makespan objective: Minimise ℓ, the system is feasible

if, and only if, ℓ ≤ 1. □

The immediate extension of LP-Feas to clusters is the following:

LP 3 (LP-CFeas). The workload assignment is solution of the fol-
lowing LP:

Ûm∑
h=1

xi ,h × Ûri ,h = ui i = 1, 2, . . . ,n (7)

Ûm∑
h=1

xi ,h ≤ ℓ i = 1, 2, . . . ,n (8)

n∑
i=1

xi ,h ≤ Ûmh × ℓ h = 1, 2, . . . , Ûm (9)

Minimise makespan objective: Minimise ℓ, the system is feasible

if, and only if, ℓ ≤ 1. □

LP-Feas and LP-CFeas differ in Equations 6 and 9: since on a

unrelated multicore platform, a cluster Ûπh has Ûmh cores, a total

capacity of Ûmh can be allocated to tasks. It is straightforward that

the condition ℓ ≤ 1 constrains solutions of LP-CFeas to be solutions

of LP-Cluster. Therefore by Theroem 3.1, a solution of LP-CFeas

with ℓ ≤ 1 can be used to build a feasible schedule.

3.4 LP-Load and LP-CLoad
LP-Feas and LP-CFeas tend to reduce the makespan of the schedule

that will be stretched between successive releases. As an exam-

ple, let two tasks be scheduled on two very different cores: one

being ten times faster than the other one for all the tasks. Consider

the system of two tasks Γ = {τ1, τ2}, with both WCET given by

C1 = C2 = 5 and both periods given by T1 = T2 = 10. The platform

is composed of two clusters of one core each, with Π = { Ûπ1, Ûπ2},
both clusters having only one core Ûm1 = Ûm2 = 1, and having

respective rates Ûr1,1 = Ûr2,1 = 10 for Ûπ1, and Ûr1,2 = Ûr2,2 = 1

for Ûπ2. The workload assignment matrix computed by LP-CFeas

(or equivalently LP-Feas since clusters have one core) is given by

XLP−CFeas =

[
5/11 5/11

5/11 5/11

]
( 5/11 ≈ 0.4545). This would lead to a
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π1 τ1 τ2

π2 τ2 τ1

(a) LP-CFeas
0 1 2 3 4 5 6 7 8 9 10

π1 τ1 τ2

π2 idle

(b) LP-CLoad
Figure 3: Rectangle schedule computed from LP-CFeas ver-
sus schedule favouring fast cores utilisation computed from
LP-Cload

schedule repeated between every successive release (which is every

ten time units in our simple example since both tasks have a period

of 10), as shown in Figure 3(a).

When considering the number of presences of tasks on clusters,

a more interesting workload assignment would favour a high util-

isation, or load, on faster cores: XLP−CLoad =

[
1/2 1/2

0 0

]
. Such

workload assignment could lead to a schedule such as Figure 3(b),

which does not produce any inter-cluster migration. LP-CLoad is a

LP formulation with the same constraints as LP-Cluster, with the

objective of minimising the used capacity of the system. On the

unrelated multicore platforms problem, it is defined for LP-Cluster

as: LP-CLoad: Minimise

∑n
i=1

∑ Ûm
h=1 xi ,h .

LP-CLoad can be used in the context of a flat platform model. To

do so, one simply has to assume that each core is a cluster of size

one, i.e. Ûmh = 1 for every cluster Ûπh .

3.5 Minimal number of presences: ILP-CMig
Even if non polynomial, an optimal method minimising the number

of presences of tasks on clusters can be useful. Indeed, a system

designer may prefer spending a couple of hours waiting for the

assignment to be computed rather than spending development time

and facing the complexity to implement an inter-cluster migration.

Since we are working at the cluster level, the size of the problem, at

least in the number of clusters, can be relatively small in practice.

We propose a Mixed Integer Linear Programming (MILP) formu-

lation called ILP-CMig, based on the LP-Cluster. In addition, we

introduce a boolean variable bi ,h . Variable bi ,h is 1 if task τi is
present on cluster Ûπh , and 0 otherwise. The objective is to minimise

the total number of presences.

LP 4 (ILP-CMig). The workload assignment is solution of LP-
Cluster (Equations 1, 2, 3) with the following additional constraints:

bi ,h ∈ {0, 1} i = 1, . . . ,n;h = 1, . . . , Ûm (10)

xi ,h ≤ bi ,h i = 1, . . . ,n;h = 1, . . . , Ûm (11)

bi ,h < 1 + xi ,h i = 1, . . . ,n;h = 1, . . . , Ûm (12)

Minimise
∑n
i
∑ Ûm
h bi ,h .

The non-clustered version ILP-Mig has the same set of con-

straints than LP-Cluster where each cluster is considered as a single

core with the computing capacity ofm cores.

3.6 Hetero-Split
In order to compare the previous methods to an efficient existing

one, we consider Hetero-Split [15]. This algorithm solves an equiv-

alent expression of LP-Cluster with a O(n logn) time complexity. It

is restricted to systems having only two different types of clusters.

A property of this algorithm is to limit the number of tasks having

a number of presences in excess higher than one (i.e., assigned to

the two different clusters) to the total number of cores. Since there

are only two clusters, tasks are classified into two categories: either

cluster Ûπ1 is more efficient, or it is Ûπ2 that is more efficient for their

execution. The method exploits this dual property and thus cannot

be easily extended to more than two types of clusters. Nevertheless,

it allows the use of McNaughton wrap-around rule to efficiently

create a schedule conforming to the workload assignment.

4 EXPERIMENTAL COMPARISON OF
WORKLOAD ASSIGNMENT METHODS

When neglecting the migration cost, every workload assignment

method presented in Section 3 is optimal regarding the feasibility.

Since we know that this hypothesis is unrealistic, we compare

the number of presences in excess ÛPri −1 for the six presented

methods. The number of presences in excess is a lower bound on

the number of inter-cluster migrations. The LP based methods,

as well as Hetero-Split, are polynomial time methods, while the

MILP based method has an exponential time complexity regarding

the number of clusters. In this section, we compare the following

methods:

• LP-Feas is the method minimising the makespan proposed

in [6] considering the “flat” core model, while its clustered

version LP-CFeas presented in Section 3.3 considers the hi-

erarchical clustered model;

• LP-Load (see Section 3.4), whose objective is to minimise the

total core utilisation, its clustered version is LP-CLoad;

• Hetero-Split ([15]) a linear algorithm limited to two types of

clusters;

• ILP-Mig is the “flat” core-based version of ILP-CMig, a MILP

problem minimising the number of presences on clusters. In

practice, ILP-CMig uses significantly fewer variables than

ILP-Mig.

4.1 Experimental setup
In Section 2.3 we formalised the notion of consistent clusters. In our

opinion, it fits more precisely to certain realistic platforms where

cores have different micro-architectures but identical ISA, as the

big.LITTLE
®

or the Helio X20
®

.

For the number of presences and simulation experiments, we

have generated the systems as follows. The number of types of

clusters Ûm is either 2 or 5. The former in order to compare Hetero-

Split to the other methods, and the latter because five different

types of clusters is considered a large size for a heterogeneous

MPSoC nowadays. Then, the number of cores per type of cluster is

set in [2, 5]. The number of tasks n is arbitrary bounded as follows:

Ûm ≤ n ≤ 10 × Ûm. We then generate every task such that its period

Ti is determined using [19]. The parameter Ci is based on Ti :
Ti
2

≤

Ci ≤ Ti . We then generate the rates randomly and adjust them so

that the tasks fit the given utilisation. For experimentation purposes,

the clusters (the rates in particular) may be set to consistent.

Using this generator, we generate 1 000 systems per total utili-

sation range u ∈ [p − 0.1,p), increasing p from 0.4 to 1, for both

Ûm = 2 and Ûm = 5. The ratio p = 1 corresponds to a full utilisation
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of the platform by the tasks. Here, p is equal to the value of the

LP-CFeas objective function result, which is the minimal platform

utilisation. The experimentation compares the different scheduling

methods over 28 000 randomly generated test systems. As ILP-Mig

and ILP-CMig have an exponential time complexity, they are tested

using only a subset of the generated systems.

4.2 Inter-cluster number of presences in excess
The workload assignment methods are compared in terms of inter-

cluster presences in Figure 4. First note that the scale is 10
−2
, mean-

ing that in average, very few tasks are assigned to different clusters,

for both two and five types of clusters.

On the left-hand graph (with Ûm = 2), we observe that Hetero-

Split performs close to LP-CFeas for low platform utilisation. At

higher platform utilisation, Hetero-Split dominates the other poly-

nomial time assignment methods. We can see that both the Feas-
based LP solutions perform poorly at low platform utilisation com-

pared to the Load-based LP solutions for both two-types and five-

types of cores. This is due to Feas objective that tends to create

“rectangular” (i.e. all processors tend to be idle at the same instant)

schedules by balancing the tasks workload on different cores or

clusters, as illustrated in Figure 3. While the platform utilisation

increases, the slack left at the right-hand side of this rectangle

reduces, and the solutions provided by both objective functions

tend to be similar. At high platform utilisation, we thus see that

both clustered versions of the LP outperform both non-clustered

versions. When combining the two advantages —both the clustered

version and the Load objective function—, we observe two to four

times fewer inter-cluster migrations compared to the seminal non-

clustered Feas objective function. On the right-hand graph, we see

the proportion of generated systems for which the assignment is

completely clustered for two types of clusters. It is close to 100%

for the ILP-CMig, while the clustered LP-CLoad dominates all the

other methods in terms of ratio of completely clustered workload

assignments. When comparing both graphs, we can observe that LP-

CLoad performs better than Hetero-Split regarding tasks clustering

on consistent two-types systems. However, Hetero-split performs

better in average on arbitrary clusters.

4.3 Runtime measurement
The performance of the LP/ILP based solution in terms of execution

time are depicted in Table 1. The experiment has been conducted

on a Intel I7500
®

multicore processor. The left table gives the perfor-

mances of the LP/ILP based solution with the same test systems. In

this experiment, the system utilisations are uniformly distributed in

the range [0.3, 1.0]. The rest of the system parameters are generated

as in Section 4.1. The table on the right gives the average perfor-

mances with test systems ordered by number of tasks. Thus, both

tables are not comparable because they do not have the same test

systems. The left table gives the average computation time, per LP

or ILP for both Ûm = 2 and Ûm = 5 on unrelated clusters. For example,

ILP-Mig took an average of 0.061 second to compute the workload

assignment with Ûm = 2. We observe that the clustered version of a

LP or an ILP is always faster than the non-clustered version, which

is normal since there are fewer variables in the clustered versions.

Also, the execution time from Ûm = 2 to Ûm = 5 increases drastically

Ûm = 2 Ûm = 5

LP-Feas 0.013 0.464

LP-Load 0.012 0.562

LP-CFeas 0.002 0.027

LP-CLoad 0.002 0.029

Hetero-Split 0.007 NA

ILP-Mig 0.061 NA

ILP-CMig 0.018 0.068

ILP-Mig, Ûm = 2

n time (s)

10 0.811

11 1.736

12 3.562

13 8.271

14 16.665

15 28.492

16 69.782

17 130.582

Table 1: Average execution time of the workload assignment
methods in seconds

and this affects less the clustered versions, since there are fewer

additional cluster variables than core variables. The table on the

right gives the performance of ILP-CMig with Ûm = 2 for n tasks.

It clearly shows that the execution time grows exponentially with

the number of tasks, making it intractable for large systems.

5 GLOBAL SCHEDULING APPLICABILITY ON
HETEROGENEOUS PLATFORMS

In this section, we examine the applicability of the provided results.

Specifically, we discuss the applicability of the global scheduling

on unrelated platforms. First, we study the validity of considering

migrations upon an unrelated platform. Second, we expose some

limitations on the use of a template to schedule tasks in practice.

5.1 How realistic is the migration of tasks
upon unrelated platforms?

Real heterogeneous platforms. The global scheduling on unre-

lated processors makes the assumption that the migration of tasks

between processors with heterogeneous architectures is possible.

As mentioned in [26] to motivate partitioned scheduling, the mi-

gration between processors with different instruction sets is at

least challenging if not unrealistic. Indeed, tasks code should be

compiled for both architectures and migration points determined

beforehand if jobs migration is allowed. Consequently, the context

of the migrating task —the state of all active job local variables—

should also be saved and transferred to the destination core (e.g.

by using the OpenAMP framework) to ensure the continuation of

this task at the point it has stopped. Nevertheless, recent platforms

as ARM big.LITTLE
®

are game-changing. Those platforms embed

clusters of cores different in their micro-architecture (asymmetric)
but having similar ISA (instructions set architecture) with full cache

coherence. This allows migrations between cores belonging to dif-

ferent clusters. Specifically, ARM big.LITTLE
®

platforms are made

of a cluster of fast but energy-consuming (big) cores and a cluster of

slower but more energy-efficient (LITTLE) cores. These platforms

are unrelated and cannot be classified as uniform as the rate of

execution still depends both on the task and the executing core.

They are consistent (see Section 4.1) in the sense that there exists an

order of magnitude between the core processing rate of different

clusters: big cores executes tasks always faster than LITTLE cores

but not always with the same magnitude.
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Figure 4: Number of presences by workload assignment method for unrelated and consistent clusters
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(b) Stretched template schedule example
Figure 5: Template-based scheduling

Applied scheduling in heterogeneous platforms. In practice, the

Energy Aware Scheduler (EAS) [22] has been recently integrated

in the mainline linux kernel (from version 5.0) and supports migra-

tion between single-ISA cores of asymmetric clusters. Based on a

model of the cores energy consumption, EAS selects which core to

use —the most energy efficient— and at which frequency using the

dynamic voltage and frequency scaling (DVFS) mechanism. In line

with the existing Completely Fair Scheduler (CFS) [21], EAS aims at

providing a fair distribution of the cores utilisation to non real-time

tasks while maximising the overall performance but also optimising

energy usage. When CFS is designed for identical cores (symmet-

rical multi-processing or SMP in the OS terminology), EAS takes

advantage of recent asymmetric multi-processing (AMP) platforms

as ARM big.LITTLE
®

. SCHED_DEADLINE [24] is an implementa-

tion of the global EDF scheduler [8] for real-time tasks in Linux

together with the Constant Bandwidth Server (CBS) [4] algorithm

to manage non real-time tasks. SCHED_DEADLINE was designed

for identical cores (SMP) and may starve all the tasks upon a con-

sistent (AMP) platform. This issue amongst other was discussed by

Luca Abeni in talks given during the last two editions of the OSPM

summit [3, 16]. He proposed some practical solutions (submitted as

a linux kernel patchset in [2]) as adapting the admission control test

of tasks and selecting the least energy consuming processor capable

of executing the pending task. Interestingly, the latter proposal is

valid because the two clusters of cores are consistent. Consequently,

studying the global scheduling of unrelated platform is not only

theoretical but practicable and the particular case of consistent

cores fits well to those modern platforms.

5.2 Template-based scheduling
In Section 3, we detail the workload assignment phase of tasks

to cores. To the best of our knowledge, any global scheduler on

heterogeneous platform starts with such a workload assignment

phase. This workload assignment phase is then followed by the

construction of a template schedule. This template schedule contains
a feasible schedule of the periodic task set, over a time instant. An

example of a template schedule is given in Figure 5(a). We will now

discuss the possible usages of this template schedule.

In [6, 15], this template schedule is stretched between every

absolute task releases, as illustrated in Figure 5(b). Repeating the

template schedule every time unit is acceptable for a feasibility

test. It is however not acceptable in practice, due to the number

of preemptions and migrations involved. To limit the online over-

head, some techniques have been developed to improve the average

case, as [11]. This work is designed in the context of an affinity

mask model, with sporadic tasks. In the worst case, however, this

optimisation has no effect. Other works, as [29], loose the hypoth-

esis of hard real-time tasks to soft real-time tasks with bounded

tardiness and allow intra-task parallelism via a DAG-task model.

This change of paradigm allows to reduce the overhead and thus

improves the use in practice. However, this change of paradigm

may not be applied in the general case. One could also argue that

considering that the rate of a task is constant on a given core is

unrealistic. For example, if a task has a first part involving intensive

integer computation, followed by a second part of intensive floating

point computation, the rate of execution of both parts would differ

depending on whether the core as a FPU or not. As a result, the
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task should be split in more homogeneous sub-tasks, such that each

task can be considered as having a constant rate of execution on

each core. This requires a DAG-task model or at least a model that

handles chains of tasks to be considered.

The use of identical platform scheduling techniques for unrelated

platform scheduling has been explored. However, those techniques

seem to be hard to generalise to unrelated platforms. In [15], the

authors propose a global scheduling algorithm for periodic tasks on

a 2-types heterogeneous platform. After the workload assignment

phase hetero-split, it performs the 2-types McNaughton hetero-wrap.
This 2-types McNaughton assigns the fractions of processing capac-

ity of a task for both cluster at once while preventing parallelism.

To fill both cluster at once, the first cluster is filled from left to

right, while the second one is filled symmetrically from the right

to the left. Adapting this seminal McNaughton to two types plat-

form required several transformations. As indicated in Section 3.6,

this transformations based on a symmetrical filling seems hard to

generalise to unrelated platforms with any number of types.

As mentioned in [11], the template schedule produced could be

optimised in terms of preemptions with heuristics reordering the

windows delimited by scheduling points. However, it would not

decrease the number of presences and the schedule would remain

static.

Repeating the same sequence over and over reduces the adapt-

ability of the system. To avoid this, an option would be to avoid the

use of a template schedule. Designing a more dynamic scheduler

such as EDF or Last Laxity First (LLF) may be difficult or require a

very pessimistic approach. We believe that for consistent platforms,

the design of dynamic schedulers will be made much simpler due

to the monotonous characteristic of such platforms. The use of

consistent platform would ease both the design of the platform and

the usability in practice, as those platforms become more and more

common on the market.

6 CONCLUSION
Starting from the observation that inter-processor migrations are

more costly than intra-processor migrations, we propose a new

model to handle those two types of migrations differently. Based

on previous works, we use this cluster-based model to design the

workload assignment of an optimal scheduler on unrelated plat-

forms. To do so, we propose a LP formulation, with several objective

functions. We show that this LP formulation is an exact feasibility

test and that its output may be used to construct an offline schedule.

We also propose an ILP formulation that is optimal regarding both

schedulability and the number of inter-cluster migrations. Using

simulation, we demonstrate the impact of our model on the num-

ber of inter-cluster migrations. Our new solution outperforms the

existing one. The optimal ILP is used as a reference.

This new workload assignment thus improves the applicability

of global scheduling on unrelated platform, by reducing the online

overheads. We discuss the applicability of global scheduling in the

context of unrelated platform. We show that global scheduling for

heterogeneous platforms is actually used in practice. Consistent

platforms are likely to be used in this context, because the the-

oretical migration model is close from their behaviour for such

platforms. We also discuss the existing usages of global scheduling

for the general unrelated case and their limitations.

In the future, we intend to evaluate the performance of an online

scheduler, such as a global EDF as such an algorithm may be more

usable in practice. Closing the gap between theory and practice

could also be done by observing more complex task model, such as

Gang scheduling or a DAG-based task model.
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